Domain wall

Last updated

A domain wall is a type of topological soliton that occurs whenever a discrete symmetry is spontaneously broken. Domain walls are also sometimes called kinks in analogy with closely related kink solution of the sine-Gordon model or models with polynomial potentials. [1] [2] [3] Unstable domain walls can also appear if spontaneously broken discrete symmetry is approximate and there is a false vacuum.

Contents

A domain (hyper volume) is extended in three spatial dimensions and one time dimension. A domain wall is the boundary between two neighboring domains. Thus a domain wall is extended in two spatial dimensions and one time dimension.

Important examples are:

Besides these important cases similar solitons appear in wide spectrum of the models. Here are other examples:

Related Research Articles

<span class="mw-page-title-main">Inflation (cosmology)</span> Theory of rapid universe expansion

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10−36 seconds after the conjectured Big Bang singularity to some time between 10−33 and 10−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old.

<span class="mw-page-title-main">Wormhole</span> Hypothetical topological feature of spacetime

A wormhole is a speculative structure linking disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Soliton</span> Self-reinforcing single wave packet

In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.

In physics, the Schwinger model, named after Julian Schwinger, is the model describing 1+1D Lorentzian quantum electrodynamics which includes electrons, coupled to photons.

<span class="mw-page-title-main">Spontaneous symmetry breaking</span> Symmetry breaking through the vacuum state

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.

Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.

A topological soliton or "toron" occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological soliton occurs in old-fashioned coiled telephone handset cords, which are usually coiled clockwise. Years of picking up the handset can end up coiling parts of the cord in the opposite counterclockwise direction, and when this happens there will be a distinctive larger loop that separates the two directions of coiling. This odd looking transition loop, which is neither clockwise nor counterclockwise, is an excellent example of a topological soliton. No matter how complex the context, anything that qualifies as a topological soliton must at some level exhibit this same simple issue of reconciliation seen in the twisted phone cord example.

<span class="mw-page-title-main">Brane cosmology</span> Several theories in particle physics and cosmology related to superstring theory and M-theory

Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory.

In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities.

<span class="mw-page-title-main">False vacuum decay</span> Hypothetical vacuum, less stable than true vacuum

In quantum field theory, a false vacuum is a hypothetical vacuum that is stable, but not in the most stable state possible. It may last for a very long time in that state, but could eventually decay to the more stable state, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span>

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

In theoretical physics, Q-ball is a type of non-topological soliton. A soliton is a localized field configuration that is stable—it cannot spread out and dissipate. In the case of a non-topological soliton, the stability is guaranteed by a conserved charge: the soliton has lower energy per unit charge than any other configuration.

Erick J. Weinberg is a theoretical physicist and professor of physics at Columbia University.

The DGP model is a model of gravity proposed by Gia Dvali, Gregory Gabadadze, and Massimo Porrati in 2000. The model is popular among some model builders, but has resisted being embedded into string theory.

A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet due to its electrostatic properties. In a CDW, the combined effects of pinning and electrostatic interactions likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below.

Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self-organization. They can be considered as an extension of the classical soliton concept in conservative systems. An alternative terminology includes autosolitons, spots and pulses.

In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

<span class="mw-page-title-main">Nematicon</span>

In optics, a nematicon is a spatial soliton in nematic liquid crystals (NLC). The name was invented in 2003 by G. Assanto. and used thereafter Nematicons are generated by a special type of optical nonlinearity present in NLC: the light induced reorientation of the molecular director. This nonlinearity arises from the fact that the molecular director tends to align along the electric field of light. Nematicons are easy to generate because the NLC dielectric medium exhibits the following properties:

The Kibble–Zurek mechanism (KZM) describes the non-equilibrium dynamics and the formation of topological defects in a system which is driven through a continuous phase transition at finite rate. It is named after Tom W. B. Kibble, who pioneered the study of domain structure formation in the early universe, and Wojciech H. Zurek, who related the number of defects it creates to the critical exponents of the transition and to its rate—to how quickly the critical point is traversed.

The Kundu equation is a general form of integrable system that is gauge-equivalent to the mixed nonlinear Schrödinger equation. It was proposed by Anjan Kundu as

References

  1. Lohe, M.A. (1979). "Soliton structures in $P(\phi)_2$". Physical Review D. 20 (12): 3120–3130. Bibcode:1979PhRvD..20.3120L. doi:10.1103/PhysRevD.20.3120.
  2. Gani, V.A.; Kudryavtsev, A.E.; Lizunova, M.A. (2014). "Kink interactions in the (1+1)-dimensional φ^6 model". Physical Review D. 89 (12): 125009. arXiv: 1402.5903 . Bibcode:2014PhRvD..89l5009G. doi:10.1103/PhysRevD.89.125009. S2CID   119333950.
  3. Gani, V.A.; Lensky, V.; Lizunova, M.A. (2015). "Kink excitation spectra in the (1+1)-dimensional φ^8 model". Journal of High Energy Physics. 2015 (8): 147. arXiv: 1506.02313 . doi:10.1007/JHEP08(2015)147. ISSN   1029-8479. S2CID   54184500.
  4. V. A. Rubakov and M. E. Shaposhnikov, Do we live inside a domain wall?, Physics Letters B 125 (1983), 136–138.
  5. V. Dzhunushaliev, V. Folomeev, M. Minamitsuji, Thick brane solutions, Rept.Prog.Phys. 73 (2010).

Further reading