Hyper-Kamiokande

Last updated
Overview of the Hyper-Kamiokande experiment HK experiment overview.jpg
Overview of the Hyper-Kamiokande experiment

Hyper-Kamiokande (also called Hyper-K or HK) is a neutrino observatory and experiment under construction in Hida, Gifu and in Tokai, Ibaraki in Japan. It is conducted by the University of Tokyo and the High Energy Accelerator Research Organization (KEK), in collaboration with institutes from over 20 countries across six continents. [1] [2] As a successor of the Super-Kamiokande (also Super-K or SK) and T2K experiments, it is designed to search for proton decay and detect neutrinos from natural sources such as the Earth, the atmosphere, the Sun and the cosmos, as well as to study neutrino oscillations of the man-made accelerator neutrino beam. [3] :6,20–28 The beginning of data-taking is planned for 2027. [4]

Contents

The Hyper-Kamiokande experiment facility will be located in two places:

Physics program

Accelerator and atmospheric neutrino oscillations

Neutrino oscillations are a quantum mechanical phenomenon in which neutrinos change their flavour (neutrino flavours states:
ν
e
,
ν
μ
,
ν
τ
) while moving, caused by the fact that the neutrino flavour states are a mixture of the neutrino mass states (ν1, ν2, ν3 mass states with masses m1, m2, m3, respectively). The oscillation probabilities depend on the six theoretical parameters:

and two parameters which are chosen for a particular experiment:

Continuing studies done by the T2K experiment, the HK far detector will measure the energy spectra of electron and muon neutrinos in the beam (produced at J-PARC as an almost pure muon neutrino beam) and compare it with the expectation in case of no oscillations, which is initially calculated based on neutrino flux and interaction models and improved by measurements performed by the near and intermediate detectors. For the HK/T2K neutrino beam peak energy (600 MeV) and the J-PARC – HK/SK detector distance (295 km), this corresponds to the first oscillation maximum, for oscillations driven by ∆m232. The J-PARC neutrino beam will run in both neutrino- and antineutrino-enhanced modes separately, meaning that neutrino measurements in each beam mode will provide information about muon (anti)neutrino survival probability P
ν
μ

ν
μ
, P
ν
μ

ν
μ
, and electron (anti)neutrino appearance probability P
ν
μ

ν
e
, P
ν
μ

ν
e
, where Pνα → Pνβ is the probability that a neutrino originally of flavour α will be observed later as having flavour β. [3] :202–224

The ability of Hyper-K to exclude CP conservation as a function of the true value of dCP Hk cp exclusion ability.png
The ability of Hyper-K to exclude CP conservation as a function of the true value of δCP

Comparison of the appearance probabilities for neutrinos and antineutrinos (P
ν
μ

ν
e
versus P
ν
μ

ν
e
) allows measurement of the δCP phase. δCP ranges from −π to (from −180° to +180°), and 0 and ±π correspond to CP symmetry conservation. After 10 years of data taking, HK is expected to confirm at the 5σ confidence level or better if CP symmetry is violated in the neutrino oscillations for 57% of possible δCP values. CP violation is one of the conditions necessary to produce the excess of matter over antimatter at the early universe, which forms now our matter-built universe. Accelerator neutrinos will be used also to enhance the precision of the other oscillation parameters, |∆m232|, θ23 and θ13, as well as for neutrino interaction studies. [3] :202–224

In order to determine the neutrino mass ordering (whether the ν3 mass eigenstate is lighter or heavier than both ν1 and ν2), or equivalently the unknown sign of the ∆m232 parameter, neutrino oscillations must be observed in matter. With HK beam neutrinos (295 km, 600 MeV), the matter effect is small. In addition to beam neutrinos, the HK experiment studies atmospheric neutrinos, created by cosmic rays colliding with the Earth's atmosphere, producing neutrinos and other byproducts. These neutrinos are produced at all points on the globe, meaning that HK has access to neutrinos that have travelled through a wide range of distances through matter (from a few hundred metres to the Earth's diameter). These samples of neutrinos can be used to determine the neutrino mass ordering. [3] :225–237

Ultimately, a combined beam neutrino and atmospheric neutrino analysis will provide the most sensitivity to the oscillation parameters δCP, |∆m232|, sgn ∆m232, θ23 and θ13. [3] :228–233

Neutrino astronomy and geoneutrinos

Core-collapse supernova explosions produce great quantities of neutrinos. For a supernova in the Andromeda Galaxy, 10 to 16 neutrino events are expected in the HK far detector. For a galactic supernova at a distance of 10 kpc about 50,000 to 94,000 neutrino interactions are expected during a few tens of seconds. For Betelgeuse at the distance 0.2 kpc, this rate could reach up to 108 interactions per second and such a high event rate was taken into account in the detector electronics and data acquisition (DAQ) system design, meaning that no data would be lost. Time profiles of the number of events registered in HK and their mean energy would enable testing models of the explosion. Neutrino directional information in the HK far detector can provide an early warning for the electromagnetic supernova observation, and can be used in other multi-messenger observations. [3] :263–280 [7]

Neutrinos cumulatively produced by supernova explosions throughout the history of the universe are called supernova relic neutrinos (SRN) or diffuse supernova neutrino background (DSNB) and they carry information about star formation history. Because of a low flux (few tens/cm2/sec.), they have not yet been discovered. With ten years of data taking, HK is expected to detect about 40 SRN events in the energy range 16–30 MeV. [3] :276–280 [8]

For the solar
ν
e
's, the HK experiment goals are:

Geoneutrinos are produced in decays of radionuclides inside the Earth. Hyper-Kamiokande geoneutrino studies will help assess the Earth's core chemical composition, which is connected with the generation of the geomagnetic field. [3] :292–293

Proton decay

The decay of a free proton into lighter subatomic particles has never been observed, but it is predicted by some grand unified theories (GUT) and results from baryon number (B) violation. B violation is one of the conditions needed to explain the predominance of matter over antimatter in the universe. The main channels studied by HK are
p+

e+
+
π0
which is favoured by many GUT models and
p+

ν
+
K+
predicted by theories including supersymmetry. [11]

After ten years of data taking, (in case no decay will be observed) HK is expected to increase the lower limit of the proton mean lifetime from 1.6 · 1034 to 6.3 · 1034 years for its most sensitive decay channel (
p+

e+
+
π0
) and from 0.7 · 1034 to 2.0 · 1034 years for the
p+

ν
+
K+
channel. [3] [12]

Dark matter

Dark matter is a hypothetical, non-luminous form of matter proposed to explain numerous astronomical observations suggesting the existence of additional invisible mass in galaxies. If the dark matter particles interact weakly, they may produce neutrinos through annihilation or decay. Those neutrinos could be visible in the HK detector as an excess of neutrinos from the direction of large gravitational potentials such as the galactic centre, the Sun or the Earth, over an isotropic atmospheric neutrino background. [3] :281–286

Experiment description

The Hyper-Kamiokande experiment consists of an accelerator neutrino beamline, a set of near detectors, the intermediate detector and the far detector (also called Hyper-Kamiokande). The far detector by itself will be used for proton decay searches and studies of neutrinos from natural sources. All the above elements will serve for the accelerator neutrino oscillation studies. Before launching the HK experiment, the T2K experiment will finish data taking and HK will take over its neutrino beamline and set of near detectors, while the intermediate and the far detectors have to be constructed anew. [13]

Numu flux iwcd.png
The muon neutrino flux at the IWCD detector for different off-axis angles
Nue flux iwcd.png
The electron neutrino flux at the IWCD detector for different off-axis angles

Neutrino beamline

Near detectors

Intermediate Water Cherenkov Detector

The Intermediate Water Cherenkov Detector (IWCD) will be located at a distance of around 750 metres (2,460 ft) from the neutrino production place. It will be a cylinder filled with water of 10 metres (33 ft) diameter and 50 metres (160 ft) height with a 10 metres (33 ft) tall structure instrumented with around 400 multi-PMT modules (mPMTs), each consisting of nineteen 8 centimetres (3.1 in) diameter PhotoMultiplier Tubes (PMTs) encapsulated in a water-proof vessel. The structure will be moved in a vertical direction by a crane system, providing measurements of neutrino interactions at different off-axis angles (angles to the neutrino beam centre), spanning from 1° at the bottom to 4° at the top, and thus for different neutrino energy spectra. [note 1]

Combining the results from different off-axis angles, it is possible to extract the results for nearly monoenergetic neutrino spectrum without relying on theoretical models of neutrino interactions to reconstruct neutrino energy. Usage of the same type of detector as the far detector with almost the same angular and momentum acceptance allows comparison of results from these two detectors without relying on detector response simulations. These two facts, independence from the neutrino interaction and detector response models, will enable HK to minimise systematic error in the oscillation analysis. Additional advantages of such a design of the detector is the possibility to search for sterile oscillation patterns for different off-axis angles and to obtain a cleaner sample of electron neutrino interactions, whose fraction is larger for larger off-axis angles. [3] :47–50 [14] [15] [16] [17]

Hyper-Kamiokande far detector

A schematic of the Hyper-Kamiokande Far Detector, a water Cherenkov detector Hyper-Kamiokande scheme.png
A schematic of the Hyper-Kamiokande Far Detector, a water Cherenkov detector

The Hyper-Kamiokande detector will be built 650 metres (2,130 ft) under the peak of Nijuugo Mountain in the Tochibora mine, 8 kilometres (5.0 mi) south from the Super-Kamiokande (SK) detector. Both detectors will be at the same off-axis angle (2.5°) to the neutrino beam centre and at the same distance (295 kilometres (183 mi)) from the beam production place in J-PARC. [note 2] [3] :35 [18]

A mockup of 50 cm R12860 PMTs for the Hyper-Kamiokande Far Detector Inner Detector HK ID PMT.jpg
A mockup of 50 cm R12860 PMTs for the Hyper-Kamiokande Far Detector Inner Detector
Prototipo completo piccola.jpg
A prototype of a mPMT for the Hyper-Kamiokande Far Detector Inner Detector
HK mPMT scheme.jpg
A schematic of a mPMT for the Hyper-Kamiokande Far Detector Inner Detector
HK OD PMT.jpg
3-inch PMT (Photomultiplier) and WLS (Wavelength-Shifting Fiber) plate for Hyper-Kamiokande Far Detector Outer Detector

HK will be a water Cherenkov detector, 5 times larger (258 kton of water) than the SK detector. It will be a cylindrical tank of 68 metres (223 ft) diameter and 71 metres (233 ft) height. The tank volume will be divided into the Inner Detector (ID) and the Outer Detector (OD) by a 60 cm-wide inactive cylindrical structure, with its outer edge positioned 1 meter away from vertical and 2 meters away from horizontal tank walls. The structure will optically separate ID from OD and will hold PhotoMultiplier Tubes (PMTs) looking both inwards to the ID and outwards to the OD. [18] [19]

In the ID, there will be at least 20,000 50 centimetres (20 in) diameter PhotoMultiplier Tubes (PMT) of R12860 type by Hamamatsu Photonics and approximately 800 multi-PMT modules (mPMTs). Each mPMT module consists of nineteen 8 centimetres (3.1 in) diameter photomultiplier tubes encapsulated in a water-proof vessel. The OD will be instrumented with at least 3,600 8 centimetres (3.1 in) diameter PMTs coupled with 0.6×30×30 cm3 wavelength shifting (WLS) plates (plates will collect incident photons and transport them to their coupled PMT) and will serve as a veto [note 3] to distinguish interactions occurring inside from particles entering from the outside of the detector (mainly cosmic-ray muons). [18] [19] [17]

J-PARC neutrino beam Japan to Korea J-PARC neutrino beam Japan to Korea.png
J-PARC neutrino beam Japan to Korea

HK detector construction began in 2020 and the start of data collection is expected in 2027. [3] [4] [13] :24 Studies have also been undertaken on the feasibility and physics benefits of building a second, identical water-Cherenkov tank in South Korea around 1100 km from J-PARC, which would be operational 6 years after the first tank. [5] [20]

History and schedule

The Hyper-Kamiokande detector construction schedule Hyper-Kamiokande detector construction schedule.png
The Hyper-Kamiokande detector construction schedule

A history of large water Cherenkov detectors in Japan, and long-baseline neutrino oscillation experiments associated with them, excluding HK:

A history of the Hyper-Kamiokande experiment:

Notes

  1. The average energy of neutrinos decreases with the deviation from the beam axis.
  2. The Super-Kamiokande detector serves as a far detector for the neutrino oscillation analysis by the T2K experiment. However, Super-Kamiokande is also a separate experiment in the matter of proton decay searches and studies of neutrinos from natural sources.
  3. Veto is part of a detector where no activity should be registered to accept an event. Such a requirement allows constraining the number of background events in a selected sample.

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Sudbury Neutrino Observatory</span> Underground laboratory in Ontario, Canada

The Sudbury Neutrino Observatory (SNO) was a neutrino observatory located 2100 m underground in Vale's Creighton Mine in Sudbury, Ontario, Canada. The detector was designed to detect solar neutrinos through their interactions with a large tank of heavy water.

<span class="mw-page-title-main">Super-Kamiokande</span> Japanese neutrino observatory

Super-Kamiokande is a neutrino observatory located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan. It is operated by the Institute for Cosmic Ray Research, University of Tokyo with the help of an international team. It is located 1,000 m (3,300 ft) underground in the Mozumi Mine in Hida's Kamioka area. The observatory was designed to detect high-energy neutrinos, to search for proton decay, study solar and atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy.

<span class="mw-page-title-main">Gargamelle</span> CERN Bubble chamber particle detector

Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, before the detector was moved to the Super Proton Synchrotron (SPS). In 1979 an irreparable crack was discovered in the bubble chamber, and the detector was decommissioned. It is currently part of the "Microcosm" exhibition at CERN, open to the public.

<span class="mw-page-title-main">KEK</span> Japanese high-energy physics organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

<span class="mw-page-title-main">Neutrino oscillation</span> Phenomenon in which a neutrino changes lepton flavor as it travels

Neutrino oscillation is a quantum mechanical phenomenon in which a neutrino created with a specific lepton family number can later be measured to have a different lepton family number. The probability of measuring a particular flavor for a neutrino varies between three known states, as it propagates through space.

<span class="mw-page-title-main">Solar neutrino</span> Extremely light particle produced by the Sun

A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment. Neutrinos are elementary particles with extremely small rest mass and a neutral electric charge. They only interact with matter via weak interaction and gravity, making their detection very difficult. This has led to the now-resolved solar neutrino problem. Much is now known about solar neutrinos, but research in this field is ongoing.

<span class="mw-page-title-main">Neutrino detector</span> Physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

The Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo is a neutrino and gravitational waves laboratory located underground in the Mozumi mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan. A set of groundbreaking neutrino experiments have taken place at the observatory over the past two decades. All of the experiments have been very large and have contributed substantially to the advancement of particle physics, in particular to the study of neutrino astronomy and neutrino oscillation.

<span class="mw-page-title-main">NOvA</span> Observatory

The NOνA experiment is a particle physics experiment designed to detect neutrinos in Fermilab's NuMI beam. Intended to be the successor to MINOS, NOνA consists of two detectors, one at Fermilab, and one in northern Minnesota. Neutrinos from NuMI pass through 810 km of Earth to reach the far detector. NOνA's main goal is to observe the oscillation of muon neutrinos to electron neutrinos. The primary physics goals of NOvA are:

<span class="mw-page-title-main">SNO+</span>

SNO+ is a physics experiment designed to search for neutrinoless double beta decay, with secondary measurements of proton–electron–proton (pep) solar neutrinos, geoneutrinos from radioactive decays in the Earth, and reactor neutrinos. It could also observe supernovae neutrinos if a supernova occurs in our galaxy. It is under construction using the underground equipment already installed for the former Sudbury Neutrino Observatory (SNO) experiment at SNOLAB.

The K2K experiment was a neutrino experiment that ran from June 1999 to November 2004. It used muon neutrinos from a well-controlled and well-understood beam to verify the oscillations previously observed by Super-Kamiokande using atmospheric neutrinos. This was the first positive measurement of neutrino oscillations in which both the source and detector were fully under experimenters' control. Previous experiments relied on neutrinos from the Sun or from cosmic sources. The experiment found oscillation parameters which were consistent with those measured by Super-Kamiokande.

The Deep Underground Neutrino Experiment (DUNE) is a neutrino experiment under construction, with a near detector at Fermilab and a far detector at the Sanford Underground Research Facility that will observe neutrinos produced at Fermilab. An intense beam of trillions of neutrinos from the production facility at Fermilab will be sent over a distance of 1,300 kilometers (810 mi) with the goal of understanding the role of neutrinos in the universe. More than 1,000 collaborators work on the project. The experiment is designed for a 20-year period of data collection.

<span class="mw-page-title-main">Accelerator Neutrino Neutron Interaction Experiment</span> Water Cherenkov detector experiment

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos. By implementing early prototypes of LAPPDs, high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV. ANNIE will begin installation in the summer of 2015. Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation which is expected to begin late 2018.

The diffuse supernova neutrino background(DSNB) is a theoretical population of neutrinos (and anti-neutrinos) cumulatively originating from all core-collapse supernovae events throughout the history of the universe. Though it has not yet been directly detected, the DSNB is theorized to be isotropic and consists of neutrinos with typical energies on the scale of 107 eV. Current detection efforts are limited by the influence of background noise in the search for DSNB neutrinos and are therefore limited to placing limits on the parameters of the DSNB, namely the neutrino flux. Restrictions on these parameters have gotten more strict in recent years, but many researchers are looking to make direct observations in the near future with next generation detectors. The DSNB is not to be confused with the cosmic neutrino background (CNB), which is comprised by relic neutrinos that were produced during the Big Bang and have much lower energies (10−4 to 10−6 eV).

Kōichirō Nishikawa was a Japanese elementary particle physicist, known for contributions to neutrino physics. He was professor emeritus of the KEK high-energy physics laboratory and Kyōto University.

The Enhanced NeUtrino BEams from kaon Tagging or ENUBET is an ERC funded project that aims at producing an artificial neutrino beam in which the flavor, flux and energy of the produced neutrinos are known with unprecedented precision.

An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources.

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10 to 20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

References

  1. 1 2 3 "Hyper-Kamiokande website: Overview".
  2. "Hyper-Kamiokande website: Collaboration Institutes".
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Hyper-Kamiokande Proto-Collaboration (28 November 2018). "Hyper-Kamiokande Design Report". arXiv: 1805.04163 [physics.ins-det].
  4. 1 2 3 4 "Kamioka Observatory website: The Hyper-Kamiokande project is officially approved". Kamioka Observatory ICRR, The University of Tokyo. 12 February 2018.
  5. 1 2 Francesca Di Lodovico (Queen Mary, U. of London) for the Hyper-Kamiokande collaboration (Sep 20, 2017). "The Hyper-Kamiokande Experiment". J. Phys. Conf. Ser. 888 (1): 012020. Bibcode:2017JPhCS.888a2020D. doi: 10.1088/1742-6596/888/1/012020 .
  6. Particle Data Group and Workman (August 2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8): 083C01. doi: 10.1093/ptep/ptac097 . hdl: 11585/900713 .
  7. the Hyper-Kamiokande collaboration (Jan 13, 2021). "Supernova Model Discrimination with Hyper-Kamiokande". Astrophys. J. 916 (1): 15. arXiv: 2101.05269 . Bibcode:2021ApJ...916...15A. doi: 10.3847/1538-4357/abf7c4 .
  8. Yano, Takatomi (2021). "Prospects for neutrino astrophysics with Hyper-Kamiokande". PoS. ICRC2021: 1193. doi: 10.22323/1.395.1193 . hdl: 20.500.11850/589619 .
  9. Maltoni, Michele and Smirnov, Alexei Yu. (Jul 19, 2015). "Solar neutrinos and neutrino physics". Eur. Phys. J. A. 52 (4): 87. arXiv: 1507.05287 . doi:10.1140/epja/i2016-16087-0. S2CID   254115998.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. "Hyper-Kamiokande website: Cosmic Neutrino Observation: Solar neutrinos".
  11. Mine, Shunichi (2023). "Nucleon decay: theory and experimental overview". Zenodo. doi:10.5281/zenodo.10493165.
  12. K. S. Babu; E. Kearns; et al. (2013-11-20). "Baryon Number Violation". Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013). Minneapolis, MN, USA. arXiv: 1311.5285 .
  13. 1 2 Vilela, Cristovao (September 5–10, 2021). "The status of T2K and Hyper-Kamiokande experiments". PANIC 2021 Conference. Archived from the original on 2021-09-29. Retrieved 2021-09-29.
  14. nuPRISM Collaboration (13 December 2014). "Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline". arXiv: 1412.3086 [physics.ins-det].
  15. nuPRISM Collaboration (7 July 2016). "Proposal for the NuPRISM Experiment in the J-PARC Neutrino Beamline" (PDF). Archived (PDF) from the original on 2 December 2020. Retrieved 1 April 2020.
  16. Mark Hartz (2020-07-29). "Near Detectors for the Hyper-K Neutrino Experiment". 40th International Conference on High Energy Physics (ICHEP 2020).
  17. 1 2 Umut Kose (on behalf of the Hyper-Kamiokande Collaboration) (2023-12-07). "The Hyper-Kamiokande Experiment: Status and Prospect". The 17th International Workshop on Tau Lepton Physics (TAU2023). Retrieved 2024-02-08.
  18. 1 2 3 "Hyper-Kamiokande website: Hyper-Kamiokande Detector".
  19. 1 2 Jan Kisiel (Silesia U.) for the Hyper-Kamiokande collaboration (Jun 28, 2023). "Photodetection and electronic system for the Hyper-Kamiokande Water Cherenkov detectors". Nucl. Instrum. Meth. A. 1055: 168482. Bibcode:2023NIMPA105568482K. doi: 10.1016/j.nima.2023.168482 .
  20. Hyper-Kamiokande Proto-Collaboration (June 20, 2019). "Physics potentials with the second Hyper-Kamiokande detector in Korea". Progress of Theoretical and Experimental Physics. 2018 (6): 063C01. arXiv: 1611.06118 . doi:10.1093/ptep/pty044.
  21. Shiozawa, M. (23–25 September 1999). "Study of 1-Megaton water Cherenkov detectors for the future proton decay search". AIP Conf.Proc. 533 (2000) 1, 21–24. International Workshop on Next Generation Nucleon Decay and Neutrino Detector (NNN99). Stony Brook, NY, United States. doi:10.1063/1.1361719.
  22. Nakamura, K. (2000). "HYPER-KAMIOKANDE: A next generation water Cherenkov detector for a nucleon decay experiment". Part of Neutrino Oscillations and Their Origin. Proceedings, 1st Workshop, Fujiyoshida, Japan, February 11–13: 359–363.
  23. K. Abe; et al. (15 September 2011). "Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential ---". arXiv: 1109.3262 [hep-ex].
  24. "Hyper-Kamiokande website: The Inaugural Symposium of the Hyper-K Proto-Collaboration". Kashiwa, Japan. February 5, 2015.
  25. "Proto-collaboration formed to promote Hyper-Kamiokande". CERN Courier. 9 April 2015.
  26. "Hyper-Kamiokande construction to start in 2020". CERN Courier. 28 September 2018.
  27. "Groundbreaking ceremony for Hyper-Kamiokande held in Hida, Japan". The University of Tokyo. 28 May 2021.
  28. Itow, on behalf of the Hyper-Kamiokande Collaboration, Y. (2021). "Construction status and prospects of the Hyper-Kamiokande project". Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021). Proceedings of Science. p. 1192. doi: 10.22323/1.395.1192 . S2CID   199687331.
  29. "Hyper-Kamiokande experiment; Excavation of the gigantic underground cavern has finally begun".
  30. "Kamioka Observatory website: Completion of the main cavern dome section of the Hyper-Kamiokande experiment". 11 October 2023.