FASER experiment

Last updated
Large Hadron Collider
(LHC)
LHC.svg
Plan of the LHC experiments and the preaccelerators.
LHC experiments
ATLAS A Toroidal LHC Apparatus
CMS Compact Muon Solenoid
LHCb LHC-beauty
ALICE A Large Ion Collider Experiment
TOTEM Total Cross Section, Elastic Scattering and Diffraction Dissociation
LHCf LHC-forward
MoEDAL Monopole and Exotics Detector At the LHC
FASER ForwArd Search ExpeRiment
SND Scattering and Neutrino Detector
LHC preaccelerators
p and Pb Linear accelerators for protons (Linac 4) and lead (Linac 3)
(not marked) Proton Synchrotron Booster
PS Proton Synchrotron
SPS Super Proton Synchrotron

FASER (ForwArd Search ExpeRiment) is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new elementary particles, as well as to detect and study the interactions of high-energy collider neutrinos. [1] In March 2023, FASER reported the first observation of collider neutrinos [2] [3] , which was confirmed shortly after also by SND@LHC [4] .

Contents

The experiment is installed in the service tunnel TI12, which is 480 m downstream from the interaction point used by the ATLAS experiment. [5] This tunnel was formerly used to inject the beam from the SPS into the LEP accelerator. In this location, the FASER experiment is placed into an intense and highly collimated beam of both neutrinos as well as possible new particles. Additionally, it is shielded from ATLAS by about 100 meters of rock and concrete, providing a low background environment. The FASER experiment was approved in 2019. [6] [7] The detector was built in the following two years and installed in 2021. [8] The experiment started taking data at the beginning of Run 3 of the LHC in summer 2022. [9] [10] [11]

Searches for new elementary particles

The primary goal of the FASER experiment is to search for new light and feebly interacting elementary particles, that have not been discovered yet, such as dark photons, axion-like particles and sterile neutrinos. [12] [13] If these particles are sufficiently light, they can be produced in rare decays of hadrons. Such particles will therefore be dominantly produced in the forward direction along the collision axis, forming a highly collimated beam, and can inherit a large fraction of the LHC proton beam energy. Additionally, due to their small couplings to the standard model particles and large boosts, these particles are long-lived and can easily travel hundreds of meters without interacting before they decay to standard model particles. These decays lead to a spectacular signal, the appearance of highly energetic particles, which FASER aims to detect.

The FASER Collaboration has performed several searches for new elementary particles:

Neutrino physics

Position of FASER experiment in side tunnel TI12 in the LHC at CERN FASER in LHC.jpg
Position of FASER experiment in side tunnel TI12 in the LHC at CERN

The LHC is the highest energy particle collider built so far, and therefore also the source of the most energetic neutrinos created in a controlled laboratory environment. Indeed, collisions at the LHC lead to a large flux of high-energy neutrinos of all flavours, which are highly collimated around the beam collision axis and stream through the FASER location.

In 2021, the FASER Collaboration announced the first detection of collider neutrino candidates. [16] [17] [18] [19] [20] The data used for this discovery was collected by a small emulsion pilot detector with a target mass of 11 kg. The detector was placed in the service tunnel TI18, and the data was collected for only four weeks during LHC Run 2 in 2018. While this outcome fell short of being a discovery of collider neutrinos, it highlighted the potential and feasibility of conducting dedicated neutrino experiments at the LHC.

In 2023, the FASER Collaboration announced [21] [22] [23] and published [3] the first observation of collider neutrinos. For this, they searched for events in which a high momentum track emerges from the central part of the FASERv detector volume and no activity in the most upstream veto layers, as expected from a muon neutrino interaction. [24] This search was performed using only the electronic detector components.

To study these neutrino interactions in greater detail, FASER also contains the dedicated FASERv sub-detector (which is pronounced FASERnu). [25] [26] This detector consists of over 700 photographic emulsion films interleaved with 1mm thick plates of tungsten. This detector, which has a mass of about 1.1 tons, has the ability to observe the particles emerging from a neutrino interaction with sub-μm resultion, thereby providing a very high resolution image of neutrino interactions. During its nominal run time of a few years, about 10000 neutrinos are expected to be recorded by FASERν. [27] These neutrinos typically have TeV scale energies, allowing FASERv to study their interactions in a regime where they are currently unconstrained.

The FASER Collaboration has performed several measurements of neutrinos:

FASER experiment setup in the LHC at CERN FASER.jpg
FASER experiment setup in the LHC at CERN

FASER's neutrino program is capable of exploring the following physics domains:

  1. FASER measures neutrino-nucleus interaction cross sections for all three neutrino flavours at the TeV energy scale. With the ability to identify the neutrino flavor, this allows to test lepton flavour universality in neutrino scattering.
  2. FASER will be able to see the highest number of tau neutrino interactions, allowing to study this elusive particle in greater detail.
  3. FASER will carry out very precise measurements of muon neutrino interactions at an energy scale never explored before. These measurements will allow to probe the proton's structure and constrain parton distribution functions.
  4. Neutrinos reaching FASER are primarily produced in the decay of pions, kaons and charmed hadrons. The measurement of the neutrino fluxes therefore allows to constrain the production of these particles in kinematic regime that is inaccessible for the other LHC experiments. This provides new key inputs for astro-particle physics experiments.

Detector

Layout of the FASER detector FASER Detector Layout.png
Layout of the FASER detector

The FASER detector [33] is located in the service tunnel TI12, about 480 meters east of the ATLAS experiment. At this location, a concrete trench has been excavated to align the detector precisely with the beam axis, where the flux of neutrinos is maximized. The detector covers the pseudorapidity region η > 8.5.

Located at the front end of FASER is the FASERν neutrino detector. It consists of 770 layers of emulsion films interleaved with tungsten plates acting as target material for neutrino interactions. This setup allows to see charged particle tracks and electromagnetic showers emerging from the neutrino interaction, measure their momenta and energies, as well as identify short-lived charm hadron or tau lepton decays. Together, this enables a precise reconstruction of neutrino interactions. On its upstream end, a front veto consisting of two scintillators layers detects incoming charged particles, while downstream, an interface tracker connects the emulsion detector with the electronic components of the FASER main detector.

Behind FASERν and at the entrance to the main detector is a charged particle veto consisting of plastic. [34] [35] This is followed by a 1.5 meter long empty decay volume and a 2 meter long tracking spectrometer, both of which are placed in a 0.57 T magnetic field. The spectrometer consists of three tracking stations, composed of layers of precision silicon strip detectors, to detect charged particles produced in the decay of long-lived particles. Further downstream, the pre-shower station provides particle identification capabilities while the electromagnetic calorimeter, composed of four spare modules from the LHCb experiment, measures the energy of electromagnetic showers.

In January 2025, a new high granularity preshower system was installed. [36] This allows the separation of two very closely spaced high energy photons, as expected from axion-like particle decay. Furthermore, a muon identification system was installed at the end of the detector. Both upgrades enhance the capability of searches for new elementary particles.

The FASER location has also been used to host prototypes for proposed future detectors. In 2024, the FORMOSA demonstrator was installed behind FASER. [37] This detector is designed similar to the MilliQan experiment and consists of an array of highly sensitive plastic scintillators. Like MilliQan, it searches for millicharged particles, which are possible elementary particles whose charge is much smaller than that of an electron. The demonstrator aims to prove the feasibility of the full experiment, which is intended to be installed in the proposed Forward Physics Facility, an underground hall located about 620 metres away from the ATLAS interaction point. [38] The FORMOSA demonstrator took data in 2024 and 2025.

References

  1. "FASER detector at the Large Hadron Collider to seek clues about hidden matter in the universe". UW News. 2019-03-05. Retrieved 11 April 2021.
  2. cern (2023-04-24). "First collider neutrinos detected". CERN Courier. Retrieved 2026-01-25.
  3. 1 2 Worcester, Elizabeth (July 19, 2023). "The Dawn of Collider Neutrino Physics". Physics. 16 113. Bibcode:2023PhyOJ..16..113W. doi:10.1103/Physics.16.113 . Retrieved July 23, 2023.
  4. Cuicchio, Francesca; INFN (2023-07-27). "THE SND@LHC EXPERIMENT OBSERVES THE FIRST NEUTRINOS PRODUCED IN A PARTICLE COLLIDER". Istituto Nazionale di Fisica Nucleare. Retrieved 2026-01-25.
  5. "LS2 Report: FASER is born". CERN. Retrieved 2021-03-25.
  6. "FASER: CERN approves new experiment to look for long-lived, exotic particles". CERN. Retrieved 2019-12-19.
  7. "FASER's new detector expected to catch first collider neutrino". CERN. Retrieved 2019-12-19.
  8. "FASER Detector Installation". EP News. Retrieved 2023-03-17.
  9. Garisto, Daniel (August 2022). "Large Hadron Collider Seeks New Particles after Major Upgrade". Scientific American. Retrieved 2023-03-17.
  10. Liverpool, University of. "Large Hadron Collider takes first data in record-breaking run". phys.org. Retrieved 2023-03-17.
  11. "LHC Run 3: physics at record energy starts tomorrow". ATLAS. Retrieved 2023-03-17.
  12. Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian (2018-02-05). "FASER: ForwArd Search ExpeRiment at the LHC". Physical Review D. 97 (3) 035001. arXiv: 1708.09389 . doi:10.1103/PhysRevD.97.035001. ISSN   2470-0010. S2CID   119101090.
  13. Ariga et al. (FASER Collaboration) (2019-05-15). "FASER's Physics Reach for Long-Lived Particles". Physical Review D. 99 (9) 095011. arXiv: 1811.12522 . Bibcode:2019PhRvD..99i5011A. doi:10.1103/PhysRevD.99.095011. ISSN   2470-0010. S2CID   119103743.
  14. Abreu, Henso; Anders, John; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Atkinson, Jeremy; Bernlochner, Florian U.; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Cadoux, Franck; Casper, David W.; Cavanagh, Charlotte; Chen, Xin; Coccaro, Andrea (2024-01-01). "Search for dark photons with the FASER detector at the LHC". Physics Letters B. 848 138378. doi:10.1016/j.physletb.2023.138378. hdl: 20.500.11850/655119 . ISSN   0370-2693.
  15. Abraham, Roshan Mammen; Ai, Xiaocong; Anders, John; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Atkinson, Jeremy; Bernlochner, Florian U.; Bianchi, Emma; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Burger, Angela; Cadoux, Franck; Cardella, Roberto (2025-01-31). "Shining light on the dark sector: search for axion-like particles and other new physics in photonic final states with FASER". Journal of High Energy Physics. 2025 (1): 199. doi:10.1007/JHEP01(2025)199. ISSN   1029-8479.
  16. FASER Collaboration; Abreu, Henso; Afik, Yoav; Antel, Claire; Arakawa, Jason; Ariga, Akitaka; Ariga, Tomoko; Bernlochner, Florian; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Cadoux, Franck; Casper, David W.; Cavanagh, Charlotte; Cerutti, Francesco (2021-11-24). "First neutrino interaction candidates at the LHC". Physical Review D. 104 (9) L091101. arXiv: 2105.06197 . Bibcode:2021PhRvD.104i1101A. doi: 10.1103/PhysRevD.104.L091101 .
  17. "Neutrinos were caught interacting at the Large Hadron Collider | Science News". 2021-05-26. Retrieved 2023-03-17.
  18. "UCI-led team of physicists detects signs of neutrinos at Large Hadron Collider". UCI News. 2021-11-24. Retrieved 2023-03-17.
  19. "Neutrinos detected in particle collider for first time at CERN". The Jerusalem Post . 28 November 2021. ISSN   0792-822X . Retrieved 2023-03-17.
  20. Dorminey, Bruce. "Suitcase-Sized Neutrino Detector Hits Pay Dirt At Large Hadron Collider". Forbes. Retrieved 2021-11-26.
  21. "UC Irvine-led team is first to detect neutrinos made by a particle collider". UCI News. 2023-03-20. Retrieved 2023-03-20.
  22. "First detection of neutrinos made at a particle collider". ScienceDaily. Retrieved 2023-03-20.
  23. "DESY News: Res eaname rch team detects first neutrinos made by a particle collider". www.desy.de. Retrieved 2023-03-21.
  24. "Observing collider neutrinos with FASER". www.qu.uni-hamburg.de. Retrieved 2026-01-25.
  25. Abreu et al. (FASER collaboration) (2020). "Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC". The European Physical Journal C. 80 (1) 61. arXiv: 1908.02310 . Bibcode:2020EPJC...80...61A. doi:10.1140/epjc/s10052-020-7631-5. S2CID   199472668.
  26. Krishna, Chetna (20 September 2022). "Catching neutrinos at the LHC". symmetry magazine. Retrieved 2023-03-17.
  27. Kling, Felix; Nevay, Laurence J. (2021-12-29). "Forward neutrino fluxes at the LHC". Physical Review D. 104 (11) 113008. arXiv: 2105.08270 . Bibcode:2021PhRvD.104k3008K. doi:10.1103/PhysRevD.104.113008.
  28. Abreu, Henso; Anders, John; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Atkinson, Jeremy; Bernlochner, Florian U.; Blesgen, Tobias; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Cadoux, Franck; Casper, David W.; Cavanagh, Charlotte; Chen, Xin (2023-07-19). "First Direct Observation of Collider Neutrinos with FASER at the LHC". Physical Review Letters. 131 (3). doi:10.1103/PhysRevLett.131.031801. ISSN   0031-9007.
  29. Abraham, Roshan Mammen; Anders, John; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Atkinson, Jeremy; Bernlochner, Florian U.; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Burger, Angela; Cadoux, Franck; Cardella, Roberto; Casper, David W.; Cavanagh, Charlotte (2024-07-11). "First Measurement of ν e and ν μ Interaction Cross Sections at the LHC with FASER's Emulsion Detector". Physical Review Letters. 133 (2). arXiv: 2403.12520 . doi:10.1103/PhysRevLett.133.021802. ISSN   0031-9007.
  30. Karthik, Nikhil (2024-07-11). "First Direct Detection of Electron Neutrinos at a Particle Collider". Physics. 17. Archived from the original on 2025-09-07.
  31. "FASER measures high-energy neutrino interaction strength". CERN. 2025-12-18. Retrieved 2026-01-25.
  32. Abraham, Roshan Mammen; Ai, Xiaocong; Anders, John; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Atkinson, Jeremy; Bernlochner, Florian U.; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Burger, Angela; Cadoux, Franck; Cardella, Roberto; Casper, David W. (2025-05-27). "First Measurement of the Muon Neutrino Interaction Cross Section and Flux as a Function of Energy at the LHC with FASER". Physical Review Letters. 134 (21). doi:10.1103/PhysRevLett.134.211801. ISSN   0031-9007.
  33. Abreu, Henso; Mansour, Elham Amin; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Bernlochner, Florian; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Cadoux, Franck; Casper, David W.; Cavanagh, Charlotte; Chen, Xin; Coccaro, Andrea; Crespo-Lopez, Olivier (2024-05-01). "The FASER detector". Journal of Instrumentation. 19 (05) P05066. doi:10.1088/1748-0221/19/05/P05066. ISSN   1748-0221.
  34. Ariga et al. (FASER Collaboration) (2018-11-26). "Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC". arXiv: 1811.10243 [physics.ins-det].
  35. Ariga et al. (FASER Collaboration) (2018-12-21). "Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC". arXiv: 1812.09139 [physics.ins-det].
  36. "A new High-Granularity pre-shower detector for FASER". EP News. Retrieved 2026-01-25.
  37. "Hunting for millicharged particles at the LHC". CERN. 2025-12-18. Retrieved 2026-01-25.
  38. "Home | FPF: Forward Physics Facility". fpf.web.cern.ch. Retrieved 2026-01-25.

46°14′09″N6°03′18″E / 46.23583°N 6.05500°E / 46.23583; 6.05500