Neutron Time Of Flight

Last updated
CERN Complex
CERN accelerator complex 2022.png
Current particle and nuclear facilities
LHC Accelerates protons and heavy ions
LEIR Accelerates ions
SPS Accelerates protons and ions
PSB Accelerates protons
PS Accelerates protons or ions
Linac 3 Injects heavy ions into LEIR
Linac4 Accelerates ions
AD Decelerates antiprotons
ELENA Decelerates antiprotons
ISOLDE Produces radioactive ion beams
MEDICIS Produces isotopes for medical purposes
4p calorimeter inside the n_TOF experiment area 1 (EAR1) N TOF experiment.jpg
4π calorimeter inside the n_TOF experiment area 1 (EAR1)

The Neutron Time Of Flight (n_TOF) facility is a neutron spectrometer at CERN, with the aim of studying neutron-nucleus interactions over a range of kinetic energies, using the time of flight method. The research conducted at the facility has applications in nuclear technology and nuclear astrophysics. [1] The facility has been in operation at CERN since 2001, following a proposal from the former Director General, Carlo Rubbia, for a high-intensity neutron source. [2] [3]

Contents

Background

Time-of-flight

The time-of-flight technique is useful for studying nuclear structure at high energies. Neutron-induced reactions are measured by observing resonances in the yields of the reactions, specifically their cross sections. Below the energy required to remove a neutron from the nucleus (neutron separation energy), transition probabilities can be deduced from measuring the gamma-ray spectra produced by the decaying nuclei. This information can bemused to graph resonances which directly correspond to nuclear levels in the decaying nucleus. For increasing mass of the nuclei, the spacing between nuclear levels decreases i.e. the level density increases. The level density is an important value for calculations involved in nuclear reaction rates, and have uses in astrophysical processes. [1]

Nuclear astrophysics

Spectral analysis of light from stars is used to study stellar elemental composition, with most stars aligning along the main sequence of the Hertzsprung-Russell diagram. However, Red Giants have a large luminosity, and its spectra suggests heavy-element production takes place within the stars. Two major processes that take place in stars are rapid neutron capture (r-process) and slow neutron-capture process (s-process). The s-process contributes significantly to element abundances in Red Giant, from iron to lead-bismuth. Neutron capture and beta decay occur during the s-process and leads to nucleosynthesis (creation of new atomic nuclei) along the neutron-rich side of the nuclear valley of stability. Neutron capture measurements are used to determine branching ratios of the s-process, which provide understanding of stellar evolution and the elemental history of stars. [1] [4]

Nuclear technology

Current nuclear fission technology has several limitations, including low uranium efficiency and a high-level of nuclear waste production. Subcritical Accelerator Driven Systems (ADS) and Generation IV fast nuclear reactors are two solutions that may decrease these limitations. Obtaining accurate neutron data, particularly high-resolution and high-accuracy cross section data, is essential for nuclear system design. [1]

Experimental setup

Cooling station of the third generation n_TOF spallation target N TOF cooling.jpg
Cooling station of the third generation n_TOF spallation target

The n_TOF facility consists of a pulsed source, specifically a beam of 20 GeV/c protons from the Proton Synchrotron (PS) impinging on a lead target. [1] [5] The lead target used is cooled using liquid nitrogen, previously water-cooled (before Long Shutdown 2), and is made of several slabs. The facility also has a 185 m horizontal flight path, along with a 20 m vertical flight path added later in its operation. The flight path allows for a high energy resolution, optimised for measurements of samples with low mass and low cross section by the vertical flight path. [5]

n_TOF experimental area 2 (EAR2) NTOF 2.jpg
n_TOF experimental area 2 (EAR2)

Neutrons are produced when the pulsed beam of protons is directed at the lead target, via neutron spallation reactions. For each proton, about 300 neutrons are expelled. The neutrons are slowed after being emitted, first by the lead target and afterwards by the slab containing water. From this, there is a wide range of neutron energies as neutrons will slow down by varying amounts, forming a spectrum of kinetic energies from meV to GeV. Finally, the neutrons are collimated and ejected through the flight path before they arrive at an experimental area. [6] [1]

n_TOF uses a total absorption calorimeter (TAC), made of 42 pentagonal and hexagonal BaF2 crystals, providing full solid angle coverage. [7] The detector is used to measure the gamma ray cascades that are produced from neutron capture reactions, and has a near 100% efficiency for detecting these reactions. [8] [7]

Related Research Articles

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle, transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has a neutral charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one dalton, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions and bosons. There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei).

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

The term p-process (p for proton) is used in two ways in the scientific literature concerning the astrophysical origin of the elements (nucleosynthesis). Originally it referred to a proton capture process which is the source of certain, naturally occurring, neutron-deficient isotopes of the elements from selenium to mercury. These nuclides are called p-nuclei and their origin is still not completely understood. Although it was shown that the originally suggested process cannot produce the p-nuclei, later on the term p-process was sometimes used to generally refer to any nucleosynthesis process supposed to be responsible for the p-nuclei.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

In nuclear physics, an energy amplifier is a novel type of nuclear power reactor, a subcritical reactor, in which an energetic particle beam is used to stimulate a reaction, which in turn releases enough energy to power the particle accelerator and leave an energy profit for power generation. The concept has more recently been referred to as an accelerator-driven system (ADS) or accelerator-driven sub-critical reactor.

<span class="mw-page-title-main">ISOLDE</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the centre of the CERN accelerator complex on the Franco-Swiss border. Created in 1964, the ISOLDE facility started delivering radioactive ion beams (RIBs) to users in 1967. Originally located at the Synchro-Cyclotron (SC) accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). ISOLDE is currently the longest-running facility in operation at CERN, with continuous developments of the facility and its experiments keeping ISOLDE at the forefront of science with RIBs. ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and sixteen (mostly) European countries. As of 2019, close to 1000 experimentalists around the world are coming to ISOLDE to perform typically 50 different experiments per year.

<span class="mw-page-title-main">ALICE experiment</span> Detector experiments at the Large Hadron Collider

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

<span class="mw-page-title-main">NA61 experiment</span>

NA61/SHINE is a particle physics experiment at the Super Proton Synchrotron (SPS) at the European Organization for Nuclear Research (CERN). The experiment studies the hadronic final states produced in interactions of various beam particles with a variety of fixed nuclear targets at the SPS energies.

<span class="mw-page-title-main">Nuclear drip line</span> Atomic nuclei decay delimiter

The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.

An accelerator-driven subcritical reactor (ADSR) is a nuclear reactor design formed by coupling a substantially subcritical nuclear reactor core with a high-energy proton or electron accelerator. It could use thorium as a fuel, which is more abundant than uranium.

<span class="mw-page-title-main">PUMA experiment</span> Particle physics experiment at CERN

The PUMA AD-9 experiment, at the Antiproton decelerator (AD) facility at CERN, Geneva, aims to look into the quantum interactions and annihilation processes between the antiprotons and the exotic slow-moving nuclei. PUMA's experimental goals require about one billion trapped antiprotons made by AD and ELENA to be transported to the ISOLDE-nuclear physics facility at CERN, which will supply the exotic nuclei. Antimatter has never been transported out of the AD facility before. Designing and building a trap for this transportation is the most challenging aspect for the PUMA collaboration.

<span class="mw-page-title-main">ISOLDE Decay Station experiment</span>

The ISOLDE Decay Station (IDS) is a permanent experiment located in the ISOLDE facility at CERN. The purpose of the experiment is to measure decay properties of radioactive isotopes using spectroscopy techniques for a variety of applications, including nuclear engineering and astrophysics. The experimental setup has been operational since 2014.

<span class="mw-page-title-main">ISOLDE Solenoidal Spectrometer experiment</span>

The ISOLDE Solenoidal Spectrometer (ISS) experiment is a permanent experimental setup located in the ISOLDE facility at CERN. By using an ex-MRI magnet, heavy radioactive ion beams (RIBs) produced by the HIE-ISOLDE post-accelerator are directed at a light target and the kinematics of the reaction is measured. The purpose of the experiment is to measure properties of atomic nuclei replicating the conditions present in some astrophysical processes, such as the production of chemical elements in stars. The experiment will also produce results that provide a better understanding of nucleon-nucleon interactions in highly-unstable, very radioactive (exotic) nuclei.

<span class="mw-page-title-main">ISOLTRAP experiment</span>

The high-precision mass spectrometer ISOLTRAP experiment is a permanent experimental setup located at the ISOLDE facility at CERN. The purpose of the experiment is to make precision mass measurements using the time-of-flight (ToF) detection technique. Studying nuclides and probing nuclear structure gives insight into various areas of physics, including astrophysics.

<span class="mw-page-title-main">UA6 experiment</span>

The Underground Area 6 (UA6), also referred to as PHOTONS, experiment was a high-energy physics experiment at the Proton-Antiproton Collider, a modification of the Super Proton Synchrotron (SPS), at CERN. The experiment ran from 1984 to 1990, with the purpose of studying inclusive electromagnetic final states and lambda production in proton-antiproton and proton-proton interactions. Towards the end of its run it focused more on direct-photon and J/ψ production. The experiment is complementary to the UA1, UA2 and CDF experiments.

References

  1. 1 2 3 4 5 6 "n_TOF – The neutron Time-of-Flight facility at CERN". ntof-exp.web.cern.ch. Retrieved 2023-08-22.
  2. Patronis, N.; Mengoni, A.; Goula, S.; Aberle, O.; Alcayne, V.; Altieri, S.; Amaducci, S.; Andrzejewski, J.; Babiano-Suarez, V.; Bacak, M.; Balibrea Correa, J.; Beltrami, C.; Bennett, S.; Bernardes, A. P.; Berthoumieux, E. (Dec 2023). "Status report of the n_TOF facility after the 2nd CERN long shutdown period". EPJ Techniques and Instrumentation. 10 (1): 1–10. doi: 10.1140/epjti/s40485-023-00100-w . ISSN   2195-7045.
  3. "Celebrating 20 years of n_TOF". CERN Courier. 2022-02-07. Retrieved 2023-08-22.
  4. n_TOF Collaboration; Abbondanno, U.; Aerts, G.; Alvarez-Velarde, F.; Álvarez-Pol, H.; Andriamonje, S.; Andrzejewski, J.; Badurek, G.; Baumann, P.; Bečvář, F.; Benlliure, J.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R. (2004-10-14). "Neutron Capture Cross Section Measurement of $^{151}\mathrm{S}\mathrm{m}$ at the CERN Neutron Time of Flight Facility (n_TOF)". Physical Review Letters. 93 (16): 161103. doi:10.1103/PhysRevLett.93.161103.
  5. 1 2 Stamati, Maria-Elisso; Patronis, Nikolas; Bacak, Michael; Amaducci, Simone; Casanovas Hoste, Adria; Garcia Infantes, Francisco; Manna, Alice; Mengoni, Alberto; Pavon Rodriguez, Jose Antonio; Praena Rodriguez, Antonio Javier; Spelta, Michele (2022-10-17). "Preparing Phase 4 of the n_TOF/CERN facility". HNPS Advances in Nuclear Physics. 28: 109–111. doi: 10.12681/hnps.3610 . ISSN   2654-0088.
  6. "nTOF | CERN". home.cern. Retrieved 2017-09-05.
  7. 1 2 Guerrero, C.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Calviani, M. (2009-09-21). "The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 608 (3): 424–433. doi:10.1016/j.nima.2009.07.025. ISSN   0168-9002.
  8. Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Taín, J. L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; González-Romero, E.; Heil, M.; Jordán, D.; Käppeler, F.; Lampoudis, C.; Martínez, T.; Massimi, C. (2012-04-11). "Monte Carlo simulation of the n_TOF Total Absorption Calorimeter". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 671: 108–117. doi:10.1016/j.nima.2011.12.046. ISSN   0168-9002.