Key SPS Experiments | |
---|---|
UA1 | Underground Area 1 |
UA2 | Underground Area 2 |
NA31 | NA31 Experiment |
NA32 | Investigation of Charm Production in Hadronic Interactions Using High-Resolution Silicon Detectors |
COMPASS | Common Muon and Proton Apparatus for Structure and Spectroscopy |
SHINE | SPS Heavy Ion and Neutrino Experiment |
NA62 | NA62 Experiment |
SPS preaccelerators | |
p and Pb | Linear accelerators for protons (Linac 2) and Lead (Linac 3) |
(not marked) | Proton Synchrotron Booster |
PS | Proton Synchrotron |
The NA62 experiment (known as P-326 at the stage of the proposal) is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 10−12. The experiment's spokesperson is Giuseppe Ruggiero (since October 2022; the former spokespersons were Cristina Lazzeroni 2019--2022 and Augusto Ceccucci before 2019). The collaboration involves 308 participants from 33 institutions and 16 countries around the world. [1]
The experiment is designed to conduct precision tests of the Standard Model by studying rare decays of charged kaons. The principal goal, for which the design has been optimized, is the measurement of the rate of the ultra-rare decay K+ → π+ + ν + ν with a precision of 10%, by detecting about 100 decay candidates with low background. This will lead to the determination of the CKM matrix element |Vtd| with a precision better than 10%. [2] This element relates very accurately to the likelihood that top quarks decay to down quarks. The Particle Data Group's 2008 Review of Particle Physics lists |Vtd| = 0.00874+0.00026
−0.00037. [3] A broad program of studies of kaon physics is run in parallel including studies of other rare decays, searches for forbidden decays, and for new exotic particles not predicted by the standard model (for example Dark Photons).
In order to achieve the desired precision, the NA62 experiment requires a certain level of signal sensitivity and background rejection. Namely, high-resolution timing (to support a high-rate environment), kinematic rejection (involving the cutting on the square of the missing mass of the observed charged particle from the decay with respect to the incident kaon vector), particle identification (especially distinguishing between pions and muons), hermetic vetoing of photons out to large angles, and redundancy of information. [4]
Due to these necessities, the NA62 experiment has constructed a detector which is approximately 270 m in length. The components of the experiment are explained briefly below, for full details see. [5]
The foundation of the NA62 experiment is observing the decays of kaons. A primary beam of protons from the SPS is delivered to a target at which a secondary hadron beam is produced which contains the kaons.
The Primary Beam, called P42, is used for the production of the beam. The 400 GeV/c SPS proton beam is split into three branches and strikes three targets (T2, T4, and T6). This produces beams of secondary particles which are directed through the underground target tunnel (TCC2). At the exit of T4, the beam of transmitted protons passes through apertures in two vertically-motorized beam-dump/collimator modules, TAX 1 and TAX 2 for P42, in which holes of different apertures define the angular acceptance of the beam and hence allow the flux of protons to be selected over a wide range. In order to protect the components of the apparatus, a computer surveillance program allows the currents in the principle magnets along the P42 beam line to be monitored and to close TAX2 in case of error.
A secondary beam line, K12HIKA+, is the kaon beam line. The target/beam tunnel, TCC8, and the cavern, ECN3, where the detectors of the NA62 experiment have been installed, have a combined length of 270m. The T10 target (located 15m from the beginning of TCC8) is used to produce the final secondary hadron beam (K12). This K12 beam-line has a length of 102m, ending at the exit of the final collimator which marks the beginning of the decay fiducial region and points to the NA62 detectors (notably the liquid krypton electro-magnetic calorimeter, LKr).
The K12 beam has an instantaneous rate of about 600 MHz and is composed primarily of pions (70%) and protons (23%) with only 6% being kaons. [6] [7] Approximately 10% of the kaons decay in the fiducial decay volume, corresponding to a rate of 4 MHz of kaon decays in the fiducial region.
The KTAG is the 'kaon tagger', designed to identify particles within the unseparated hadron beam. This detector is a differential Cherenkov counter (CERN west-area Cedar until 2022, replaced by a new Cedar-H in 2023 [8] ), instrumented with a bespoke detector consisting of 8 arrays of photodetectors (KTAG). [9]
Placed immediately upstream of the fiducial decay region, the GTK is designed to measure the time, direction, and momentum of all the beam tracks. The GTK is a spectrometer and provides the measurements of the incoming 75 GeV/c kaon beam. The GTK measurements are used for decay selections and background reduction.
The GTK is composed of four hybrid silicon pixel tracker stations labeled GTK0 (installed in 2021) GTK1, GTK2, and GTK3 based on the order in which they are found relative to the beam path. They are mounted around four achromat magnets (which are used to deflect the beam). The entire system is placed along the beam line and is inside the vacuum tank. [10] [11]
This charged anti-counter detector (CHANTI) is primarily designed to veto events with inelastic interactions between beam particles and the GTK3. The detector is constructed from six planes of scintillator detectors surrounding the beam.
The kaon beam passes through the upstream region and into the decay region, a roughly 60 m long region inside a large vacuum vessel, after which the decay products are detected in the straw tracker stations. The system measures the direction and the momentum of secondary charged particles which come from the decay region. This spectrometer is made with four chambers intersected with a high aperture dipole magnet. Each of the chambers consists of multiple straw tubes positioned to offer four views to give four coordinates. Out of 7168 straws in the whole system, only one was flawed. The leaking straw was sealed and the detector operated normally during the 2015 run. [12]
The experiment has a photon veto system that provides hermetic coverage between 0 and 50 milliradians. This system is made up of several subsystems covering different angular ranges; the Large Angle Vetos (LAVs) cover 8.5 - 50 mrad, the Liquid Krypton Calorimeter (LKr) covering 1 - 8.5 mrad and the Small Angle Vetos (SAV) covering 0 - 1 mrad.
The 12 LAV stations are constructed from four or five annular rings of lead glass scintillator detectors surrounding the decay volume. The first 11 stations are operated in the same vacuum tank as the decay volume and STRAW while the final chamber (LAV12) is positioned after the RICH and operated in air.
The IRC and SAC are electromagnetic sampling calorimeters constructed from alternating layers of lead and plastic scintillators. The SAC is positioned at the very end of the experimental apparatus in line with the beam path but after the charged particles are bent away and sent into the beam dump. This means any photons traveling along the beam direction down to 0 angle can be detected.
The LKr detector is re-used from NA48 with upgraded readout systems. The active material of the calorimeter is liquid krypton. Electromagnetic showers, initiated by charged particles or photons, are detected via ionisation electrons which drift to anodes positioned inside the liquid krypton. The signals are amplified and distributed to the readout systems.
The RICH is designed to distinguish between pions and muons for particles of momentum between 15 and 35 GeV/c. It is constructed from a 17.5 m long vessel with diameter up to 4.2 m and filled with nitrogen gas (at about 990 mbar). As charged particles pass through the gas Cherenkov photons are emitted at a fixed angle determined by the momentum and mass of the particle and the pressure of the nitrogen gas. Photons are reflected from an array of mirrors at the downstream end of the RICH and detected in two arrays of photomultiplier tube detectors at the upstream end of the vessel.
The CHOD detectors are scintillator detectors which provide input to the trigger system detecting charged particles. The system is formed from the NA48-CHOD detector, re-used from the NA48 experiment and formed from 2 planes of scintillating bars arranged vertically and horizontally, and the newly constructed CHOD constructed from an array of scintillator tiles read out by Silicon photomultipliers.
The MUV1 and MUV2 are sampling hadronic calorimeters formed from alternating layers of iron and scintillators. The newly constructed MUV1 has fine transverse segmentation to separate electromagnetic and hadronic components of showers and the MUV2 is re-used from NA48.
The MUV3 is constructed from a plane of scintillator tiles, reach read out by a pair of photomultipliers, and positioned behind an 80 cm iron wall which blocks particles leaving only muons to be detected. This detector provides a fast muon veto at trigger level and is used to identify muons at analysis level.
The experiment has run multiple tests to ensure that the new detector components were working properly. The first physics run with a nearly complete detector took place in 2015. NA62 collected data in 2016, 2017 and 2018 before the CERN Long Shut Down 2. Data-taking resumed in 2021 and will continue until CERN Long Shut Down 3.
As part of the experiment, several papers have been, and are in the process of being published. A list of published papers for the NA62 experiment can be found here.
Results published: [13] .
Results first presented at KAON19 conference.
Results published: [14]
Results published: [15]
Results published: [16]
Pionium is a composite particle consisting of one
π+
and one
π−
meson. It can be created, for instance, by interaction of a proton beam accelerated by a particle accelerator and a target nucleus. Pionium has a short lifetime, predicted by chiral perturbation theory to be 2.89×10−15 s. It decays mainly into two
π0
mesons, and to a smaller extent into two photons.
ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.
The International Muon Ionization Cooling Experiment is a high energy physics experiment at the Rutherford Appleton Laboratory. The experiment is a recognized CERN experiment (RE11). MICE is designed to demonstrate ionization cooling of muons. This is a process whereby the emittance of a beam is reduced in order to reduce the beam size, so that more muons can be accelerated in smaller aperture accelerators and with fewer focussing magnets. This might enable the construction of high intensity muon accelerators, for example for use as a Neutrino Factory or Muon Collider.
Jack Steinberger was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990.
The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main objective was to discover the W and Z bosons. UA2, together with the UA1 experiment, succeeded in discovering these particles in 1983, leading to the 1984 Nobel Prize in Physics being awarded to Carlo Rubbia and Simon van der Meer. The UA2 experiment also observed the first evidence for jet production in hadron collisions in 1981, and was involved in the searches of the top quark and of supersymmetric particles. Pierre Darriulat was the spokesperson of UA2 from 1981 to 1986, followed by Luigi Di Lella from 1986 to 1990.
The LHCb experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons. Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region. The LHCb collaborators, who built, operate and analyse data from the experiment, are composed of approximately 1650 people from 98 scientific institutes, representing 22 countries. Vincenzo Vagnoni succeeded on July 1, 2023 as spokesperson for the collaboration from Chris Parkes. The experiment is located at point 8 on the LHC tunnel close to Ferney-Voltaire, France just over the border from Geneva. The (small) MoEDAL experiment shares the same cavern.
The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.
T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.
The LHCf is a special-purpose Large Hadron Collider experiment for astroparticle physics, and one of nine detectors in the LHC accelerator at CERN. LHCf is designed to study the particles generated in the forward region of collisions, those almost directly in line with the colliding proton beams.
The NA58 experiment, or COMPASS is a 60-metre-long fixed-target experiment at the M2 beam line of the SPS at CERN. The experimental hall is located at the CERN North Area, close to the French village of Prévessin-Moëns. The experiment is a two-staged spectrometer with numerous tracking detectors, particle identification and calorimetry. The physics results are extracted by recording and analysing the final states of the scattering processes.
The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) was an instrument used in a scientific experiment for detecting tau neutrinos from muon neutrino oscillations. The experiment is a collaboration between CERN in Geneva, Switzerland, and the Laboratori Nazionali del Gran Sasso (LNGS) in Gran Sasso, Italy and uses the CERN Neutrinos to Gran Sasso (CNGS) neutrino beam.
OKA is a particle physics detector experiment at the U-70 accelerator in the Institute for High Energy Physics located in Protvino near Moscow (Russia). OKA is specialized experiment with separated charge kaons beam.
NA31 is a CERN experiment which was proposed in 1982 as a measurement of |η00 /η+-|2 by the CERN-Edinburgh-Mainz-Pisa-Siegen collaboration. It took data between 1986 and 1989, using a proton beam from the SPS through the K4 neutral beam-line. Its aim was to experimentally prove direct CP-violation.
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos. By implementing early prototypes of LAPPDs, high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV. ANNIE will begin installation in the summer of 2015. Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation which is expected to begin late 2018.
The Beijing Spectrometer III is a particle physics experiment at the Beijing Electron–Positron Collider II at the Institute of High Energy Physics (IHEP). It is designed to study the physics of charm, charmonium, and light hadron decays. It also performs studies of the tau lepton, tests of QCD, and searches for physics beyond the Standard Model. The experiment started collecting data in the summer of 2008.
]
The Enhanced NeUtrino BEams from kaon Tagging or ENUBET is an ERC funded project that aims at producing an artificial neutrino beam in which the flavor, flux and energy of the produced neutrinos are known with unprecedented precision.
FASER is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new light and weakly coupled elementary particles, and to detect and study the interactions of high-energy collider neutrinos. In 2023, FASER and SND@LHC reported the first observation of collider neutrinos.
An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources.
NA64 experiment is one of the several experiments at CERN's Super Proton Synchrotron (SPS) particle collider searching for dark sector particles. It is a fixed target experiment in which an electron beam of energy between 100-150 GeV, strikes fixed atomic nuclei. The primary goal of NA64 is to find unknown and hypothetical particles such as dark photons, axions, and axion-like particles.