NA64 experiment

Last updated
NA64 experiment ECAL and HCAL NA64 experiment.jpg
NA64 experiment ECAL and HCAL

NA64 experiment is one of the several experiments at CERN's Super Proton Synchrotron (SPS) particle collider searching for dark sector particles. [1] [2] [3] It is a fixed target experiment in which an electron beam of energy between 100-150 GeV, strikes fixed atomic nuclei. The primary goal of NA64 is to find unknown and hypothetical particles such as dark photons, axions, and axion-like particles. [4] [5] [6]

Secondarily this experiment will also use the muon beams from the SPS with the goal of finding particles that mainly interact with muons and hence could give valuable insights into muon's anomalous magnetic moment. Few other goals of NA64 include searching for invisible neutral kaon decays and meson decays, as well as the hunt of particles that could consist the mirror-type dark matter. [7] [8]

Related Research Articles

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

An axion is a hypothetical elementary particle originally theorized in 1978 independently by Frank Wilczek and Steven Weinberg as the Goldstone boson of Peccei–Quinn theory, which had been proposed in 1977 to solve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

<span class="mw-page-title-main">CERN Axion Solar Telescope</span> Experiment in astroparticle physics, sited at CERN in Switzerland

The CERN Axion Solar Telescope (CAST) is an experiment in astroparticle physics to search for axions originating from the Sun. The experiment, sited at CERN in Switzerland, was commissioned in 1999 and came online in 2002 with the first data-taking run starting in May 2003. The successful detection of solar axions would constitute a major discovery in particle physics, and would also open up a brand new window on the astrophysics of the solar core.

<span class="mw-page-title-main">LHCb experiment</span> Experiment at the Large Hadron Collider

The LHCb experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons. Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region. The LHCb collaborators, who built, operate and analyse data from the experiment, are composed of approximately 1650 people from 98 scientific institutes, representing 22 countries. Vincenzo Vagnoni succeeded on July 1, 2023 as spokesperson for the collaboration from Chris Parkes. The experiment is located at point 8 on the LHC tunnel close to Ferney-Voltaire, France just over the border from Geneva. The (small) MoEDAL experiment shares the same cavern.

<span class="mw-page-title-main">Two-photon physics</span> Branch of particle physics concerning interactions between two photons

Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.

In quantum electrodynamics, the anomalous magnetic moment of a particle is a contribution of effects of quantum mechanics, expressed by Feynman diagrams with loops, to the magnetic moment of that particle. The magnetic moment, also called magnetic dipole moment, is a measure of the strength of a magnetic source.

<span class="mw-page-title-main">DØ experiment</span> Particle physics research project (1983–2011)

The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

<span class="mw-page-title-main">Quark–gluon plasma</span> Phase of quantum chromodynamics (QCD)

Quark–gluon plasma is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon Van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

<span class="mw-page-title-main">NA62 experiment</span>

The NA62 experiment is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 10−12. The experiment's spokesperson is Cristina Lazzeroni. The collaboration involves 333 individuals from 30 institutions and 13 countries around the world.

A Muon Collider is a proposed particle accelerator facility in its conceptual design stage that collides muon beams for precision studies of the Standard Model and for direct searches of new physics. Muons belong to the second generation of leptons, they are typically produced in high-energy collisions either naturally or artificially. The main challenge of such a collider is the short lifetime of muons.

The Mu to E Gamma (MEG) is a particle physics experiment dedicated to measuring the decay of the muon into an electron and a photon, a decay mode which is heavily suppressed in the Standard Model by lepton flavour conservation, but enhanced in supersymmetry and grand unified theories. It is located at the Paul Scherrer Institute and began taking data September 2008.

<span class="mw-page-title-main">Luigi Di Lella</span> Italian experimental particle physicist

Luigi Di Lella is an Italian experimental particle physicist. He has been a staff member at CERN for over 40 years, and has played an important role in major experiments at CERN such as CAST and UA2. From 1986 to 1990 he acted as spokesperson for the UA2 Collaboration, which, together with the UA1 Collaboration, discovered the W and Z bosons in 1983.

The X17 particle is a hypothetical subatomic particle proposed by Attila Krasznahorkay and his colleagues to explain certain anomalous measurement results; these anomalous measurements are known as ATOMKI anomaly or beryllium anomaly or X17 anomaly. The particle has been proposed to explain wide angles observed in the trajectory paths of particles produced during a nuclear transition of beryllium-8 atoms and in stable helium atoms. The X17 particle could be the force carrier for a postulated fifth force, possibly connected with dark matter, and has been described as a protophobic vector boson with a mass near 17 MeV.

<span class="mw-page-title-main">FASER experiment</span> 2022 particle physics experiment at the Large Hadron Collider at CERN

FASER is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new light and weakly coupled elementary particles, and to detect and study the interactions of high-energy collider neutrinos. In 2023, FASER and SND@LHC reported the first observation of collider neutrinos.

An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources.

<span class="mw-page-title-main">Brad Cox (physicist)</span> American physicist

Bradley Cox is an American physicist, academic and researcher. He is a Professor of Physics and the founder of the High Energy Physics Group at the University of Virginia.

<span class="mw-page-title-main">Fixed-target experiment</span>

A fixed-target experiment in particle physics is an experiment in which a beam of accelerated particles is collided with a stationary target. The moving beam consists of charged particles such as electrons or protons and is accelerated to relativistic speed. The fixed target can be a solid block or a liquid or a gaseous medium. These experiments are distinct from the collider-type experiments in which two moving particle beams are accelerated and collided. The famous Rutherford gold foil experiment, performed between 1908 and 1913, was one of the first fixed-target experiments, in which the alpha particles were targeted at a thin gold foil.

The Search for Hidden Particle (SHiP) is a proposed fixed-target experiment at CERN's Super Proton Synchrotron (SPS) with the goal of searching for the interactions and measurements of the weakly interacting particles. In October 2013, the Expression of Interest letter for SHiP was submitted to the SPS Council (SPSC). Following which the Technical Proposal was submitted in April 2015, describing the experimental and detector facility. The Comprehensive Design Study was completed during 2016-19. The experiment is planned to begin in 2027, and begin collecting data in 2030.

References

  1. Krasnikov, N. V. (2020). "The Search for Light Dark Matter at NA64 Experiment". Physics of Particles and Nuclei. 51 (4): 697–702. Bibcode:2020PPN....51..697K. doi:10.1134/S1063779620040449. ISSN   1063-7796.
  2. Banerjee, Dipanwita; NA64 collaboration; Physics Beyond Colliders Conventional Beams Working Group (2019). "Search for Dark Sector Physics at the NA64 experiment in the context of the Physics Beyond Colliders Projects". Proceedings of XXIX International Symposium on Lepton Photon Interactions at High Energies — PoS(LeptonPhoton2019). Vol. 367. p. 061. arXiv: 1909.04363 . Bibcode:2019lpih.confE..61B. doi: 10.22323/1.367.0061 .{{cite book}}: |journal= ignored (help)CS1 maint: numeric names: authors list (link)
  3. Kirsanov, Mikhail (2019). "Search for Dark Sector Physics in Missing Energy Events in the NA64 Experiment". Particle Physics at the Silver Jubilee of Lomonosov Conferences. Moscow, Russia: World Scientific. pp. 353–369. doi:10.1142/9789811202339_0066. ISBN   978-981-12-0232-2. S2CID   195550676.
  4. "NA64". CERN. Retrieved 2021-05-02.
  5. Dusaev, R. R.; Kirpichnikov, D. V.; Kirsanov, M. M. (2020). "Photoproduction of axionlike particles in the NA64 experiment". Physical Review D. 102 (5): 055018. arXiv: 2004.04469 . Bibcode:2020PhRvD.102e5018D. doi: 10.1103/PhysRevD.102.055018 . ISSN   2470-0010.
  6. Bernhard, J. (2020). "Status and Plans for the NA64 Experiment". Journal of Physics: Conference Series. 1468 (1): 012023. doi: 10.1088/1742-6596/1468/1/012023 . ISSN   1742-6588.
  7. Kirsanov, Mikhail (2019). Achasov, M.N.; Ignatov, F.V.; Krokovny, P.P. (eds.). "Recent results of the NA64 experiment at the CERN SPS". EPJ Web of Conferences. 212: 06005. Bibcode:2019EPJWC.21206005K. doi: 10.1051/epjconf/201921206005 . ISSN   2100-014X.
  8. Banerjee, D.; Bernhard, J.; Burtsev, V. E.; Chumakov, A. G.; Cooke, D.; Crivelli, P.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T. (2020). "Search for Axionlike and Scalar Particles with the NA64 Experiment". Physical Review Letters. 125 (8): 081801. arXiv: 2005.02710 . Bibcode:2020PhRvL.125h1801B. doi: 10.1103/PhysRevLett.125.081801 . ISSN   0031-9007. PMID   32909809.
  1. NA64 sets bounds on how much new X bosons could change the electron's magnetism
  2. https://na64.web.cern.ch/node/10
  3. NA64 explores gap in searches for axions and axion-like particles
  4. NA64 casts light on dark photons
  5. The plot thickens for a hypothetical "X17” particles