WA89 experiment

Last updated
WA89 experiment equipment at CERN WA89 experiment.jpg
WA89 experiment equipment at CERN

The WA89 experiment (Omega/Hyperon) was a particle physics experiment operating from 1989 to 1994 in the West Area of the SPS accelerator at CERN. [1] [2] It was a large acceptance forward spectrometer dedicated to the spectroscopy of charmed strange baryons and exotic multiquark states produced by a hyperon beam.

Contents

The initial aims of the hyperon beam experiment were to investigate charmed-strange quark baryons, verify and investigate the U(3100) and study baryonic resonances and decays whilst searching for the double-strange dibaryon H. [3]

Experimental setup

The WA89 experiment consisted of a beamline and a forward spectrometer. The beamline contained the proton beam hitting the hyperon production target which was followed by a 13 m long hyperon channel. Three dipoles were used to provide a bending power of 8.4 Tm. The target region consisted of two adjacent targets surrounded by muon strip detectors. Following this, a 15 m long Λ decay region was filled with six drift chamber sets and a spectrometer magnet. [4]

The beam particle trajectories along with their momenta were measured with a scintillating fibre hodoscope in the beamline and a silicon microstrip detector at the end of the line. [1]

Related Research Articles

<span class="mw-page-title-main">Omega baryon</span>

The omega baryons are a family of subatomic hadron particles that are represented by the symbol
Ω
and are either neutral or have a +2, +1 or −1 elementary charge. They are baryons containing no up or down quarks. Omega baryons containing top quarks are not expected to be observed. This is because the Standard Model predicts the mean lifetime of top quarks to be roughly 5×10−25 s, which is about a twentieth of the timescale for strong interactions, and therefore that they do not form hadrons.

The International Muon Ionization Cooling Experiment is a high energy physics experiment at the Rutherford Appleton Laboratory. The experiment is a recognized CERN experiment (RE11). MICE is designed to demonstrate ionization cooling of muons. This is a process whereby the emittance of a beam is reduced in order to reduce the beam size, so that more muons can be accelerated in smaller aperture accelerators and with fewer focussing magnets. This might enable the construction of high intensity muon accelerators, for example for use as a Neutrino Factory or Muon Collider.

A hypernucleus is similar to a conventional atomic nucleus, but contains at least one hyperon in addition to the normal protons and neutrons. Hyperons are a category of baryon particles that carry non-zero strangeness quantum number, which is conserved by the strong and electromagnetic interactions.

<span class="mw-page-title-main">UA2 experiment</span> Particle physics experiment at CERN

The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main objective was to discover the W and Z bosons. UA2, together with the UA1 experiment, succeeded in discovering these particles in 1983, leading to the 1984 Nobel Prize in Physics being awarded to Carlo Rubbia and Simon van der Meer. The UA2 experiment also observed the first evidence for jet production in hadron collisions in 1981, and was involved in the searches of the top quark and of supersymmetric particles. Pierre Darriulat was the spokesperson of UA2 from 1981 to 1986, followed by Luigi Di Lella from 1986 to 1990.

<span class="mw-page-title-main">Hyperon</span> Type of strange baryon

In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically represented by the symbol Y.

<span class="mw-page-title-main">LHCb experiment</span> Experiment at the Large Hadron Collider

<span class="mw-page-title-main">DELPHI experiment</span>

DELPHI was one of the four main detectors of the Large Electron–Positron Collider (LEP) at CERN, one of the largest particle accelerators ever made. Like the other three detectors, it recorded and analyzed the result of the collision between LEP's colliding particle beams. The specific focus of DELPHI was on particle identification, three-dimensional information, high granularity (detail), and precise vertex determination.

<span class="mw-page-title-main">ISOLDE</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the centre of the CERN accelerator complex on the Franco-Swiss border. Created in 1964, the ISOLDE facility started delivering radioactive ion beams (RIBs) to users in 1967. Originally located at the Synchro-Cyclotron (SC) accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). ISOLDE is currently the longest-running facility in operation at CERN, with continuous developments of the facility and its experiments keeping ISOLDE at the forefront of science with RIBs. ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and sixteen (mostly) European countries. As of 2019, close to 1000 experimentalists around the world are coming to ISOLDE to perform typically 50 different experiments per year.

The Xi baryons or cascade particles are a family of subatomic hadron particles which have the symbol Ξ and may have an electric charge of +2 e, +1 e, 0, or −1 e, where e is the elementary charge.

<span class="mw-page-title-main">COMPASS experiment</span>

The NA58 experiment, or COMPASS is a 60-metre-long fixed-target experiment at the M2 beam line of the SPS at CERN. The experimental hall is located at the CERN North Area, close to the French village of Prévessin-Moëns. The experiment is a two-staged spectrometer with numerous tracking detectors, particle identification and calorimetry. The physics results are extracted by recording and analysing the final states of the scattering processes.

CEBAF Large Acceptance Spectrometer (CLAS) is a nuclear and particle physics detector located in the experimental Hall B at Jefferson Laboratory in Newport News, Virginia, United States. It is used to study the properties of the nuclear matter by the collaboration of over 200 physicists from many countries all around the world.

<span class="mw-page-title-main">Low Energy Antiproton Ring</span> Former CERN infrastructure

The Low Energy Anti-Proton Ring (LEAR) was a particle accelerator at CERN which operated from 1982 until 1996. The ring was designed to decelerate and store antiprotons, to study the properties of antimatter and to create atoms of antihydrogen. Antiprotons for the ring were created by the CERN Proton Synchrotron via the Antiproton Collector and the Antiproton Accumulator (AA). The creation of at least nine atoms of antihydrogen were confirmed by the PS210 experiment in 1995.

<span class="mw-page-title-main">NA62 experiment</span>

The NA62 experiment is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 10−12. The experiment's spokesperson is Cristina Lazzeroni. The collaboration involves 333 individuals from 30 institutions and 13 countries around the world.

Maria Fidecaro (1930-2023) was an Italian experimental physicist with a focus on particle physics. She has spent most of her career at CERN, where she had the status of honorary member of the personnel.

<span class="mw-page-title-main">Emanuele Quercigh</span> Italian particle physicist (born 1934)

Emanuele Quercigh is an Italian particle physicist who works since 1964 at CERN, most known for the discovery of quark-gluon plasma (QGP). Quercigh moved as a child to Friuli with his mother and his younger brother after the early death of his father. Quercigh studied physics at the University of Milan in Italy, where he became assistant of professor Giuseppe Occhialini in 1959.

<span class="mw-page-title-main">Volker Burkert</span> German-American physicist

Volker D. Burkert is a German physicist, academic and researcher. He is a Principal Staff Scientist at the Thomas Jefferson National Accelerator Facility at Jefferson Lab (JLab) in Newport News, Virginia (USA). He has made major contributions to the design of the CEBAF Large Acceptance Spectrometer (CLAS) that made it suitable for high luminosity operation in experiments studying spin-polarized electron scattering.

Linda Gail Stutte is an experimental elementary particle physicist. After an appointment as a postdoc at Caltech in 1974–76, Stutte was a research staff scientist at the Fermi National Accelerator Laboratory from 1976 through her retirement in 2007. She is known for work on neutrino experiments and her expertise with Fermliab neutrino beam facilities.

<span class="mw-page-title-main">UA9 experiment</span>

The Underground Area 9 (UA9) experiment is a high-energy physics experiment using particle beams from the Super Proton Synchrotron (SPS), at CERN. The purpose of the experiment is to investigate how using tiny bent crystals could allow the collimation of beams in modern hadron colliders to improve. UA9 was approved in 2008, and is in-progress as of 2013.

<span class="mw-page-title-main">VITO experiment</span>

The Versatile Ion polarisation Technique Online (VITO) experiment is a permanent experimental setup located in the ISOLDE facility at CERN, in the form of a beamline. The purpose of the beamline is to perform a wide range of studies using spin-polarised short-lived atomic nuclei. VITO uses circularly-polarised laser light to obtain polarised radioactive beams of different isotopes delivered by ISOLDE. These have already been used for weak-interaction studies, biological investigations, and more recently nuclear structure research. The beamline is located at the site of the former Ultra High Vacuum (UHV) beamline hosting ASPIC.

<span class="mw-page-title-main">WISArD experiment</span> Experimental setup at CERN

The Weak Interaction Studies with 32Ar Decay (WISArD) experiment is a permanent experimental setup located in the ISOLDE facility, at CERN. The purpose of the experiment is to investigate the weak interaction by looking for beta-delayed protons emitted from a nucleus. In the absence of online isotope production during Long Shutdown 2, the experimental setup has also been used to measure the shape of the beta energy spectrum. A goal of the experiment is to search for physics beyond the Standard Model (SM) by expanding the existing limits on currents in the weak interaction.

References

  1. 1 2 Alexandrov, Yu. A; Clement, M; Dropmann, F; Fournier, A; Grafström, P; Hubbard, E; Paul, S; Siebert, H. W; Trombini, A; Zavertiaev, M (1998-05-11). "The high-intensity hyperon beam at CERN". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 408 (2): 359–372. arXiv: physics/9801006 . doi:10.1016/S0168-9002(98)00228-9. ISSN   0168-9002.
  2. "Experiments at CERN: WA89/Omega/Hyperon—Hyperon beam experiment" . Retrieved 2020-05-15.
  3. Forino, A; Gessaroli, R; Quareni-Vignudelli, A; Viaggi, F; Barberis, D (1987). "Proposal for a new hyperon beam experiment at the CERN-SPS using the Omega facility". CERN. Geneva. SPS Experiments Committee.
  4. Paul, S. (1989). "1. The new hyperon beam experiment at CERN". AIP Conference Proceedings. AIP. 196: 280–284. doi:10.1063/1.38934.

CERN-WA-089 experiment record on INSPIRE-HEP

CERN Grey Book for WA89 experiment