NA61 experiment

Last updated

NA61/SHINE experiment at CERN
FormationData taking started on 18-04-2008
Headquarters Geneva, Switzerland
Leader of Experiment
Marek Gazdzicki
Website https://shine.web.cern.ch/
Super Proton Synchrotron
(SPS)
LHC.svg
Key SPS Experiments
UA1 Underground Area 1
UA2 Underground Area 2
NA31 NA31 Experiment
NA32 Investigation of Charm Production in Hadronic Interactions Using High-Resolution Silicon Detectors
COMPASS Common Muon and Proton Apparatus for Structure and Spectroscopy
SHINE SPS Heavy Ion and Neutrino Experiment
NA62 NA62 Experiment
SPS preaccelerators
p and Pb Linear accelerators for protons (Linac 2) and Lead (Linac 3)
(not marked) Proton Synchrotron Booster
PS Proton Synchrotron

NA61/SHINE (standing for "SPS Heavy Ion and Neutrino Experiment") is a particle physics experiment at the Super Proton Synchrotron (SPS) at the European Organization for Nuclear Research (CERN). [1] The experiment studies the hadronic final states produced in interactions of various beam particles (pions, protons and beryllium, argon, and xenon nuclei) with a variety of fixed nuclear targets at the SPS energies.

Contents

About 135 physicists from 14 countries and 35 institutions work in NA61/SHINE, led by Marek Gazdzicki. NA61/SHINE is the second largest fixed target experiment at CERN.

Physics program

The NA61/SHINE physics program has been designed to measure hadron production in three different types of collisions: [1]

Detector

The NA61/SHINE experiment uses a large acceptance hadron spectrometer located on the H2 beam line in the North Area of CERN. [1] It consist of components used by the heavy ion NA49 experiment as well as those designed and constructed for NA61/SHINE. [2]

PSD detector for NA61 SHINE PSD.jpg
PSD detector for NA61

The main tracking devices are four large volume time projection chambers (TPCs), which are capable of detecting up to 70% of all charged particles created in the studied reactions. Two of them are located in the magnetic field of two super-conducting dipole magnets with maximum bending powers of 9  Tesla meters. Two others are positioned downstream of the magnets symmetrically with respect to the beam line. Additionally, four small volume TPCs placed directly along the beamline region are used in case of hadron and light ion beams. [2] [3]

The setup is supplemented by time of flight detector walls, which extend particle identification to low momenta (1 GeV/c < p ). Furthermore, the Projectile Spectator Detector (a calorimeter) is positioned downstream of the time of flight detectors to measure energy of projectile fragments.

Collected data

Type of interactionBeam momentum YearCitation
π + Be1202016CERN-SPSC-2017-038 [4]
π + C30, 60, 158, and 3502009, 2012, 2016, and 2017CERN-SPSC-2016-038, [5] PR D100 112004, [6] and PR D100 112001 [7]
π + Al602017CERN-SPSC-2016-038 [5] and PR D98 052001 [8]
Kaon + C1582012CERN-SPSC-2016-038 [5] and MPL A34 1950078 [9]
p + p13, 20, 31, 40, 80, 158, and 4002009, 2010, 2011, and 2016EPJ C80 460, [10] SQM 2019 315, [11] and EPJ C74 2794 [12]
p + Be60, and 1202016 and 2017CERN-SPSC-2017-038, [4] and PR D100 112001 [7]
p + C
p + (T2K replica target)
p + (NOvA replica target)
31, 60, 90, and 1202007, 2009, 2010, 2012, 2016, 2017, and 2018CERN-SPSC-2017-038, [4] CERN-SPSC-2016-038, [5] CERN-SPSC-2019-041, [13] PR D100 112001 [7] and EPJ C76 617 [14]
p + Al602016CERN-SPSC-2017-038 [4] and NP B732 1 [15]
p + Pb30, 40, 80 and 1582012, 2014, 2016, and 2017CERN-SPSC-2015-036 [16]
Be + Be13A, 19A, 30A, 40A, 75A, and 150A2011, 2012, and 2013CERN-SPSC-2013-028, [17] PoS 364 305, [18] and EPJ C80 961 [19]
C + C and C + CH13A2018CERN-SPSC-2019-041 [13]
Ar + Sc13A, 19A, 30A, 40A, 75A and 150A2015CERN-SPSC-2015-036, [16] PoS 364 305, [18] Acta Phys. Pol. B Proc. Suppl. 10 645 [20] and EPJ C81 397 [21]
Xe + La13A, 19A, 30A, 40A, 75A, and 150A2017CERN-SPSC-2018-029 [22] and PoS 364 305 [18]
Pb + Pb13A, 30A, and 150A2016 and 2018CERN-SPSC-2016-038, [5] J. Phys. Conf. Ser. 1690 012127 [23] and PR C77 064908 [24]

Extended program: after Long Shutdown 2

NA61 experiment at CERN after Long Shutdown 2 NA61 SHINE.jpg
NA61 experiment at CERN after Long Shutdown 2

In 2018 the NA61/SHINE collaboration published an addendum presenting an intent to upgrade the experimental facility and perform a new set of measurements after Long Shutdown 2. [25] As in the original program, the new one proposes studies of hadron-nucleus and nucleus-nucleus interactions for heavy ions, neutrino and cosmic-ray physics.

The heavy ions program will focus on study of charm hadron production (mostly D mesons) in lead-lead interactions.

In 2020 the SPS and PS Experiments Committee (SPSC) recommended approval of beam time in 2021. [26] The Research Board endorsed these recommendations. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Gluon</span> Elementary particle that mediates the strong force

A gluon is a type of massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a spin of 1. Through the strong interaction, gluons bind quarks into groups according to quantum chromodynamics (QCD), forming hadrons such as protons and neutrons.

<span class="mw-page-title-main">Pionium</span>

Pionium is a composite particle consisting of one
π+
and one
π
meson. It can be created, for instance, by interaction of a proton beam accelerated by a particle accelerator and a target nucleus. Pionium has a short lifetime, predicted by chiral perturbation theory to be 2.89×10−15 s. It decays mainly into two
π0
mesons, and to a smaller extent into two photons.

<span class="mw-page-title-main">Top quark</span> Type of quark

The top quark, sometimes also referred to as the truth quark, is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs field. This coupling yt is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab.

<span class="mw-page-title-main">Tetraquark</span> Exotic meson composed of four valence quarks

In particle physics, a tetraquark is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron which lies outside the conventional quark model classification. A number of different types of tetraquark have been observed.

<span class="mw-page-title-main">Super Proton Synchrotron</span> Particle accelerator at CERN, Switzerland

The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, 6.9 kilometres (4.3 mi) in circumference, straddling the border of France and Switzerland near Geneva, Switzerland.

In high-energy physics, jet quenching is a phenomenon that can occur in the collision of ultra-high-energy particles. In general, the collision of high-energy particles can produce jets of elementary particles that emerge from these collisions. Collisions of ultra-relativistic heavy-ion particle beams create a hot and dense medium comparable to the conditions in the early universe, and then these jets interact strongly with the medium, leading to a marked reduction of their energy. This energy reduction is called "jet quenching".

<span class="mw-page-title-main">Antiproton Decelerator</span> Particle storage ring at CERN, Switzerland

The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons are created by impinging a proton beam from the Proton Synchrotron on a metal target. The AD decelerates the resultant antiprotons to an energy of 5.3 MeV, which are then ejected to one of several connected experiments.

In particle physics, the odderon corresponds to an elusive family of odd-gluon states, dominated by a three-gluon state. When protons collide elastically with other protons or with anti-protons at high energies, gluons are exchanged. Exchanging an even number of gluons is a crossing-even part of elastic proton–proton and proton–antiproton scattering, while odderon exchange corresponds to a crossing-odd term in the elastic scattering amplitude. In turn, the odderon's crossing-odd counterpart is the pomeron.

<span class="mw-page-title-main">Quark–gluon plasma</span> Phase of quantum chromodynamics (QCD)

Quark–gluon plasma is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon Van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

<span class="mw-page-title-main">Marek Gazdzicki</span> Polish physicist

Marek Gaździcki is a Polish high-energy nuclear physicist, and the initiator and spokesperson of the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS).

<span class="mw-page-title-main">Onset of deconfinement</span>

The onset of deconfinement refers to the beginning of the creation of deconfined states of strongly interacting matter produced in nucleus-nucleus collisions with increasing collision energy.

In high-energy nuclear physics, strangeness production in relativistic heavy-ion collisions is a signature and diagnostic tool of quark–gluon plasma (QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, heavier quark flavors such as strange and charm typically approach chemical equilibrium in a dynamic evolution process. QGP is an interacting localized assembly of quarks and gluons at thermal (kinetic) and not necessarily chemical (abundance) equilibrium. The word plasma signals that color charged particles are able to move in the volume occupied by the plasma. The abundance of strange quarks is formed in pair-production processes in collisions between constituents of the plasma, creating the chemical abundance equilibrium. The dominant mechanism of production involves gluons only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into hadrons in a breakup process, the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier charm flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of CERN's Large Hadron Collider.

<span class="mw-page-title-main">NA62 experiment</span>

The NA62 experiment is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 10−12. The experiment's spokesperson is Giuseppe Ruggiero. The collaboration involves 308 participants from 33 institutions and 16 countries around the world.

<span class="mw-page-title-main">NA49 experiment</span> Particle physics experiment

The NA49 experiment was a particle physics experiment that investigated the properties of quark–gluon plasma. The experiment's synonym was Ions/TPC-Hadrons. It took place in the North Area of the Super Proton Synchrotron (SPS) at CERN from 1991-2002.

<span class="mw-page-title-main">Terry Wyatt</span> British scientist

Terence Richard Wyatt is a Professor in the School of Physics and Astronomy at the University of Manchester, UK.

<span class="mw-page-title-main">750 GeV diphoton excess</span> 2015 anomaly in the Large Hadron Collider

The 750 GeV diphoton excess in particle physics was an anomaly in data collected at the Large Hadron Collider (LHC) in 2015, which could have been an indication of a new particle or resonance. The anomaly was absent in data collected in 2016, suggesting that the diphoton excess was a statistical fluctuation. In the interval between the December 2015 and August 2016 results, the anomaly generated considerable interest in the scientific community, including about 500 theoretical studies. The hypothetical particle was denoted by the Greek letter Ϝ in the scientific literature, owing to the decay channel in which the anomaly occurred. The data, however, were always less than five standard deviations (sigma) different from that expected if there was no new particle, and, as such, the anomaly never reached the accepted level of statistical significance required to announce a discovery in particle physics. After the August 2016 results, interest in the anomaly sank as it was considered a statistical fluctuation. Indeed, a Bayesian analysis of the anomaly found that whilst data collected in 2015 constituted "substantial" evidence for the digamma on the Jeffreys scale, data collected in 2016 combined with that collected in 2015 was evidence against the digamma.

<span class="mw-page-title-main">WA70 experiment</span>

The WA70 experiment was a collaboration between the Universities of Geneva, Glasgow, Liverpool, Milan and Neuchatel using the facilities of the OMEGA spectrometer at CERN.

<span class="mw-page-title-main">FASER experiment</span> 2022 particle physics experiment at the Large Hadron Collider at CERN

FASER is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new light and weakly coupled elementary particles, and to detect and study the interactions of high-energy collider neutrinos. In 2023, FASER and SND@LHC reported the first observation of collider neutrinos.

The Search for Hidden Particle (SHiP) is a proposed fixed-target experiment at CERN's Super Proton Synchrotron (SPS) with the goal of searching for the interactions and measurements of the weakly interacting particles. In October 2013, the Expression of Interest letter for SHiP was submitted to the SPS Council (SPSC). Following which the Technical Proposal was submitted in April 2015, describing the experimental and detector facility. The Comprehensive Design Study was completed during 2016-19. The experiment is planned to begin in 2027, and begin collecting data in 2030.

David M. Strom is an experimental high energy particle physicist on the faculty of the University of Oregon.

References

  1. 1 2 3 Antoniou, N.; et al. (NA61/SHINE Collaboration) (2006). "Study of hadron production in hadron–nucleus and nucleus–nucleus collisions at the CERN SPS". Proposal. SPSC-P-330, CERN-SPSC-2006-034.
  2. 1 2 Abgrall, N.; et al. (NA61/SHINE Collaboration) (2014). "NA61/SHINE facility at the CERN SPS: beams and detector system". Journal of Instrumentation . 9 (2–3): P06005. arXiv: 1401.4699 . Bibcode:2014JInst...9P6005A. doi:10.1088/1748-0221/9/06/P06005. S2CID   49214489.
  3. Rumberger, B.; et al. (2020). "The Forward TPC system of the NA61/SHINE experiment at CERN: a tandem TPC concept". Journal of Instrumentation . 15 (7): P07013. arXiv: 2004.11358 . Bibcode:2020JInst..15P7013R. doi:10.1088/1748-0221/15/07/p07013. S2CID   216080710.
  4. 1 2 3 4 Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (4 October 2017). Report from the NA61/SHINE experiment at the CERN SPS (Report). Status Report. Vol. CERN-SPSC-2017-038. doi:10.17181/CERN.0KV8.20KE.
  5. 1 2 3 4 5 Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (8 October 2016). Report from the NA61/SHINE experiment at the CERN SPS (Report). Status Report. Vol. CERN-SPSC-2016-038. doi:10.17181/CERN.SD0Z.RJ9V.
  6. Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (11 December 2019). "Measurements of hadron production in π++C and π++Be interactions at 60 GeV/c". Physical Review D. 100 (11): 112004. arXiv: 1909.06294 . Bibcode:2019PhRvD.100k2004A. doi:10.1103/PhysRevD.100.112004. S2CID   202573079.
  7. 1 2 3 Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (2 December 2019). "Measurements of production and inelastic cross sections for p+C, p+Be, and p+Al at 60 GeV/c and p+C and p+Be at 120 GeV/c". Physical Review D. 100 (11): 112001. arXiv: 1909.03351 . Bibcode:2019PhRvD.100k2001A. doi:10.1103/PhysRevD.100.112001. S2CID   202540178.
  8. Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (10 September 2018). "Measurements of total production cross sections for π++C, π++Al, K++C, and K++Al at 60 GeV/c and π++C and π++Al at 31 GeV/c". Physical Review D. 98 (5): 052001. arXiv: 1805.04546 . Bibcode:2018PhRvD..98e2001A. doi:10.1103/PhysRevD.98.052001. S2CID   53657928.
  9. Ali, Y.; Ullah, S.; Khattak, S. A.; Ajaz, M. (28 March 2019). "Study of pion kaon and proton in proton–carbon interactions at 158 GeV/ c using hadron production models". Modern Physics Letters A. 34 (10): 1950078. Bibcode:2019MPLA...3450078A. doi:10.1142/S0217732319500780. S2CID   127251073.
  10. Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (May 2020). "K(892)0 meson production in inelastic p+p interactions at 158 GeV/c beam momentum measured by NA61/SHINE at the CERN SPS". The European Physical Journal C. 80 (5): 460. arXiv: 2001.05370 . Bibcode:2020EPJC...80..460N. doi:10.1140/epjc/s10052-020-7955-1. S2CID   210718327.
  11. Tefelska, Angelika (2020). "$$K^{*}(892)^0$$ Production in p$$+$$p Interactions from NA61/SHINE". The XVIII International Conference on Strangeness in Quark Matter (SQM 2019). Springer Proceedings in Physics. Vol. 250. pp. 315–318. arXiv: 1911.01818 . doi:10.1007/978-3-030-53448-6_49. ISBN   978-3-030-53447-9. S2CID   207870670.
  12. Abgrall, N.; et al. (NA61/SHINE Collaboration) (March 2014). "Measurement of negatively charged pion spectra in inelastic p+p interactions at plab = 20, 31, 40, 80 and 158 GeV/c". The European Physical Journal C. 74 (3): 2794. arXiv: 1310.2417 . doi: 10.1140/epjc/s10052-014-2794-6 . S2CID   56103527.
  13. 1 2 Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (2019). Report from the NA61/SHINE experiment at the CERN SPS (Report). Status Report. Vol. CERN-SPSC-2019-041. doi:10.17181/CERN.E3JY.7Z6E.
  14. Abgrall, N.; et al. (NA61/SHINE Collaboration) (November 2016). "Measurements of π± differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS". The European Physical Journal C. 76 (11): 617. arXiv: 1603.06774 . Bibcode:2016EPJC...76..617A. doi: 10.1140/epjc/s10052-016-4440-y . S2CID   55382653.
  15. Catanesi, M.G.; et al. (2006). "Measurement of the production cross-section of positive pions in p–Al collisions at". Nuclear Physics B. 732 (1–2): 1–45. arXiv: hep-ex/0510039 . doi:10.1016/j.nuclphysb.2005.10.016. S2CID   119507867.
  16. 1 2 Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (2015). Report from the NA61/SHINE experiment (Report). Status Report. Vol. CERN-SPSC-2015-036. doi:10.17181/CERN.38K1.4QRP.
  17. Abgrall, N.; et al. (NA61/SHINE Collaboration) (2013). Report from the NA61/SHINE experiment at the CERN SPS (Report). Status Report. doi:10.17181/CERN.91DL.3G3V.
  18. 1 2 3 Davis, Nikolaos (2020). "Searching for the critical point of strongly interacting matter in nucleus-nucleus collisions at CERN SPS". European Physical Society Conference on High Energy Physics (EPS-HEP2019). Proceedings of Science. Vol. 364. p. 305. doi: 10.22323/1.364.0305 . S2CID   228963987.
  19. Acharya, A.; et al. (NA61/SHINE Collaboration) (October 2020). "Measurements of π production in 7Be + 9Be collisions at beam momenta from 19A to 150A GeV/c in the NA61/SHINE experiment at the CERN SPS". The European Physical Journal C. 80 (10): 961. arXiv: 2008.06277 . Bibcode:2020EPJC...80..961A. doi:10.1140/epjc/s10052-020-08514-6. S2CID   222277028.
  20. Lewicki, M. (2017). "Pion Spectra in Ar+Sc Interactions at SPS Energies". Acta Physica Polonica B Proceedings Supplement. 10 (3): 645. arXiv: 1612.01334 . doi:10.5506/APhysPolBSupp.10.645. S2CID   119011438.
  21. Acharya, A.; et al. (NA61/SHINE Collaboration) (May 2021). "Spectra and mean multiplicities of π in central 40Ar + 45Sc collisions at 13A, 19A, 30A, 40A, 75A and 150A GeV/c beam momenta measured by the NA61/SHINE spectrometer at the CERN SPS". The European Physical Journal C. 81 (5): 397. Bibcode:2021EPJC...81..397A. doi: 10.1140/epjc/s10052-021-09135-3 . S2CID   236615453.
  22. Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (2018). Report from the NA61/SHINE experiment at the CERN SPS (Report). Status Report. Vol. CERN-SPSC-2018-029. doi:10.17181/CERN.XNSX.G8FK.
  23. Kashirin, E; Selyuzhenkov, I; Golosov, O; Klochkov, V (December 2020). "Directed flow measurement in Pb+Pb collisions at p lab = 13 A GeV/c collected with NA61/SHINE at SPS". Journal of Physics: Conference Series. 1690: 012127. doi: 10.1088/1742-6596/1690/1/012127 . S2CID   234506920.
  24. Alt, C.; et al. (30 June 2008). "Bose-Einstein correlations of π − π − pairs in central Pb+Pb collisions at 20 A, 30 A, 40 A, 80 A, and 158 A GeV". Physical Review C. 77 (6): 064908. arXiv: 0709.4507 . doi:10.1103/PhysRevC.77.064908. S2CID   119200777.
  25. Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (2018). "Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans". Addendum (Proposal). CERN-SPSC-2018-008, SPSC-P-330-ADD-10.
  26. "Minutes of the 136th Meeting of the SPSC, Tuesday and Wednesday, 21–22 January 2020". 2020. CERN-SPSC-2020-003; SPSC-136.
  27. "Minutes of the 232nd meeting of the Research Board, held on 11 March 2020". 2020. CERN-DG-RB-2020-495; M-232.