Soudan 2

Last updated
On the right is the front wall of the Soudan 2 detector. The corrugated walls seen on the left, center and top of the image are parts of its veto shield. Soudan-2 large.jpg
On the right is the front wall of the Soudan 2 detector. The corrugated walls seen on the left, center and top of the image are parts of its veto shield.

Soudan 2 was a particle detector located in the Soudan Mine in Northern Minnesota, United States, that operated from 1989 to 2001. It was a 960-ton iron tracking calorimeter whose primary purpose was to search for proton decay, although its data were also used to investigate the properties of neutrinos. It found no evidence of proton decay, but it did help confirm Super-Kamiokande's atmospheric neutrino result, supporting the theory of neutrino oscillation. [1]

Contents

The Soudan Mine was also home to the MINOS and CDMS detectors.

History

Soudan 2 was the successor to the Soudan 1, a similar 30 ton detector also intended to search for proton decay. [2]

The excavation for Soudan 2 was done in 1984–1985. Installation was started in 1986 and was completed in 1993. The experiment was run from April 1989 to June 2001, beginning with a partial detector of 275 tons. [3] It was disassembled in 2005 to make room for further low background physics experiments, including MINOS.

Related Research Articles

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Super-Kamiokande</span> Japanese neutrino observatory

Super-Kamiokande is a neutrino observatory located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan. It is operated by the Institute for Cosmic Ray Research, University of Tokyo with the help of an international team. It is located 1,000 m (3,300 ft) underground in the Mozumi Mine in Hida's Kamioka area. The observatory was designed to detect high-energy neutrinos, to search for proton decay, study solar and atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy.

<span class="mw-page-title-main">MINOS</span> Particle physics experiment

Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI beamline at Fermilab near Chicago are observed at two detectors, one very close to where the beam is produced, and another much larger detector 735 km away in northern Minnesota.

<span class="mw-page-title-main">DONUT</span> Experiment at Fermilab

DONUT was an experiment at Fermilab dedicated to the search for tau neutrino interactions. The detector operated during a few months in the summer of 1997, and successfully detected the tau neutrino. It confirmed the existence of the last lepton predicted by the Standard Model. The data from the experiment was also used to put an upper limit on the tau neutrino magnetic moment and measure its interaction cross section.

<span class="mw-page-title-main">Neutrino detector</span> Physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".

<span class="mw-page-title-main">Lake Vermilion-Soudan Underground Mine State Park</span> United States historic place

The Lake Vermilion-Soudan Underground Mine State Park is a Minnesota state park at the site of the Soudan Underground Mine, on the south shore of Lake Vermilion, in the Vermilion Range (Minnesota). The mine is known as Minnesota's oldest, deepest, and richest iron mine. It formerly hosted the Soudan Underground Laboratory. As the Soudan Iron Mine, it has been designated a U.S. National Historic Landmark.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

IMB, the Irvine-Michigan-Brookhaven detector, was a nucleon decay experiment and neutrino observatory located in a Morton Salt company's Fairport mine on the shore of Lake Erie in the United States 600 meters underground. It was a joint venture of the University of California, Irvine, the University of Michigan, and the Brookhaven National Laboratory. Like several other particle detectors, it was built primarily with the goal of observing proton decay, but it achieved greater fame through neutrino observation, particularly those from Supernova SN 1987A.

<span class="mw-page-title-main">Hyper-Kamiokande</span> Neutrino observatory in Japan

Hyper-Kamiokande is a neutrino observatory and experiment under construction in Hida, Gifu and in Tokai, Ibaraki in Japan. It is conducted by the University of Tokyo and the High Energy Accelerator Research Organization (KEK), in collaboration with institutes from over 20 countries across six continents. As a successor of the Super-Kamiokande and T2K experiments, it is designed to search for proton decay and detect neutrinos from natural sources such as the Earth, the atmosphere, the Sun and the cosmos, as well as to study neutrino oscillations of the man-made accelerator neutrino beam. The beginning of data-taking is planned for 2027.

The Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo is a neutrino and gravitational waves laboratory located underground in the Mozumi mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan. A set of groundbreaking neutrino experiments have taken place at the observatory over the past two decades. All of the experiments have been very large and have contributed substantially to the advancement of particle physics, in particular to the study of neutrino astronomy and neutrino oscillation.

<span class="mw-page-title-main">NOvA</span> Observatory

The NOνA experiment is a particle physics experiment designed to detect neutrinos in Fermilab's NuMI beam. Intended to be the successor to MINOS, NOνA consists of two detectors, one at Fermilab, and one in northern Minnesota. Neutrinos from NuMI pass through 810 km of Earth to reach the far detector. NOνA's main goal is to observe the oscillation of muon neutrinos to electron neutrinos. The primary physics goals of NOvA are:

<span class="mw-page-title-main">SNO+</span>

SNO+ is a physics experiment designed to search for neutrinoless double beta decay, with secondary measurements of proton–electron–proton (pep) solar neutrinos, geoneutrinos from radioactive decays in the Earth, and reactor neutrinos. It is under construction using the underground equipment already installed for the former Sudbury Neutrino Observatory (SNO) experiment at SNOLAB. It could also observe supernovae neutrinos if a supernova occurs in our galaxy.

<span class="mw-page-title-main">Particle experiments at Kolar Gold Fields</span> Deep mine cosmic ray neutrino observations (1960–1992)

The Kolar Gold Fields (KGF), located in the Kolar district of the state of Karnataka, India, are a set of defunct gold mines known for the neutrino particle experiments and unusual observations that took place there starting in 1960. The experiments ended with the closing of the mine in 1992.

Neutrinos at the Main Injector, or NuMI, is a project at Fermilab which creates an intense beam of neutrinos aimed towards the Far Detector facility near Ash River, Minnesota for use by several particle detectors. As of June 2010, the MINOS, MINERνA and NOνA experiments use the NuMI beam.

<span class="mw-page-title-main">Soudan 1</span>

Soudan 1 was a particle detector located in the Soudan Mine in Northern Minnesota, United States, which operated for a year in 1981–82. It was a 30-ton tracking calorimeter whose primary purpose was to search for proton decay. It set a lower limit on the lifetime of the proton of 1.6×1030 years as well as upper limits on the density of magnetic monopoles. It also served as a prototype for the following Soudan 2 and MINOS experiments.

The K2K experiment was a neutrino experiment that ran from June 1999 to November 2004. It used muon neutrinos from a well-controlled and well-understood beam to verify the oscillations previously observed by Super-Kamiokande using atmospheric neutrinos. This was the first positive measurement of neutrino oscillations in which both the source and detector were fully under experimenters' control. Previous experiments relied on neutrinos from the Sun or from cosmic sources. The experiment found oscillation parameters which were consistent with those measured by Super-Kamiokande.

MINOS+ was a continuation of the MINOS experiment to measure neutrino oscillation with improved electronics. It started taking data in 2013 and ran for 3 years. The experiment has ended and a 6-month dismantling project began in early October 2016.

<span class="mw-page-title-main">Accelerator Neutrino Neutron Interaction Experiment</span> Water Cherenkov detector experiment

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos. By implementing early prototypes of LAPPDs, high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV. ANNIE will begin installation in the summer of 2015. Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation which is expected to begin late 2018.

<span class="mw-page-title-main">Mayly Sánchez</span> Venezuelan scientist

Mayly Sánchez is a Venezuelan-born particle physicist who researches at Iowa State University. In 2011, she was awarded the Presidential Early Career Awards for Scientists and Engineers (PECASE), the highest honor given by the United States to scientists who are in the early stages of their research careers, for her contributions to the study of neutrinos and her work in promoting STEM fields to women. In 2013, she was named by the BBC as one of the top ten women scientists in Latin America.

Jennifer Anne Thomas,, is a British experimental particle physicist and professor at University College London. She has been a pioneer in the development of particle detectors, and the recipient of the Michael Faraday medal and prize in 2018 for her "outstanding investigations into the physics of neutrino oscillations".

References

  1. Caldwell, David O., ed. (2001). Current Aspects of Neutrino Physics. ISBN   3-540-41002-3.
  2. D. S. Ayres. "The Soudan Nucleon Decay Program" [ permanent dead link ], ANL-HEP-CP-82-03, Presented at Workshop on Physics and Astrophysics with a Multikiloton Underground Track-Detector, Rome, Italy, 29–31 Oct 1981.
  3. Bartelt, John Eric (March 1984). Results from the Soudan Prototype Proton Decay Experiment. Archived 2012-12-11 at archive.today Ph.D. thesis. University of Minnesota). UMI-84-13752.