DONUT

Last updated
Schematic overview of the DONUT detector DONUT neutrino detector.jpg
Schematic overview of the DONUT detector

DONUT (Direct observation of the nu tau, E872) was an experiment at Fermilab dedicated to the search for tau neutrino interactions. The detector operated during a few months in the summer of 1997, and successfully detected the tau neutrino. [1] It confirmed the existence of the last lepton predicted by the Standard Model. [2] The data from the experiment was also used to put an upper limit on the tau neutrino magnetic moment [3] and measure its interaction cross section. [4]

Contents

Principle

In DONUT, protons accelerated by the Tevatron were used to produce tau neutrinos via decay of charmed mesons. After eliminating as many unwanted background particles as possible by a system of magnets and bulk matter (mostly iron and concrete), the beam passed through several sheets of nuclear emulsion. In very rare cases one of the neutrinos would interact in the detector, producing electrically charged particles which left visible tracks in the emulsion and could be electronically registered by a system of scintillators and drift chambers. [1]

Using the electronic information, possible neutrino interactions were identified and selected for further analysis. This meant photographically developing the emulsion sheets so any traces left by particles passing through them would show up as a small black dot. By connecting these dots across subsequent sheets, the path that each particle had taken was reconstructed and likely neutrino interactions identified. The characteristic properties of neutrino interactions were that several tracks suddenly appeared without any leading up to them. The tau neutrino was identified by one of those tracks showing a "kink" after a few millimeters, indicating decay of a tau lepton. [1]

Result

In July 2000, the DONUT collaboration announced the first observation of tau neutrino interactions. This result was based on only four events, but the signal was far in excess of the expected background (0.34±0.05 events), and has a p-value of 4×10−4, around 3.5 sigma. This falls below the normal standard of proof, but was generally accepted because the particle was expected to be there. The final report of 2008 [3] identifies 9 tau neutrino events from a total sample of 578 neutrino events. Its significance lies in the fact that the tau neutrino had so far remained the only particle of the Standard Model that had not been directly observed except for the Higgs boson. [2]

Other than the result itself, DONUT also allowed validation of new techniques for high energy neutrino detection, notably the Emulsion Cloud Chamber, in which nuclear emulsion sheets are interspersed with layers of iron, leading to an increase in the number of interactions.

See also

Related Research Articles

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Lepton</span> Class of elementary particles

In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

<span class="mw-page-title-main">Top quark</span> Type of quark

The top quark, sometimes also referred to as the truth quark, is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs boson. This coupling yt is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab.

In particle physics, majorons are a hypothetical type of Goldstone boson that are conjectured to mediate the neutrino mass violation of lepton number or BL in certain high energy collisions such as

In particle physics, lepton number is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number is an additive quantum number, so its sum is preserved in interactions. The lepton number is defined by where

The tau neutrino or tauon neutrino is an elementary particle which has the symbol
ν
τ
and zero electric charge. Together with the tau , it forms the third generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLAC–LBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT collaboration. In 2024, the IceCube Neutrino Observatory published findings of seven astrophysical tau neutrino candidates.

Sterile neutrinos are hypothetical particles that interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known, ordinary active neutrinos in the Standard Model, which carry an isospin charge of ⁠±+1/ 2  and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality, which may be inserted into the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs).

<span class="mw-page-title-main">Belle experiment</span> 1999-2010 Japanese particle physics experiment

The Belle experiment was a particle physics experiment conducted by the Belle Collaboration, an international collaboration of more than 400 physicists and engineers, at the High Energy Accelerator Research Organisation (KEK) in Tsukuba, Ibaraki Prefecture, Japan. The experiment ran from 1999 to 2010.

<span class="mw-page-title-main">DØ experiment</span> Particle physics research project (1983–2011)

The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

CLEO was a general purpose particle detector at the Cornell Electron Storage Ring (CESR), and the name of the collaboration of physicists who operated the detector. The name CLEO is not an acronym; it is short for Cleopatra and was chosen to go with CESR. CESR was a particle accelerator designed to collide electrons and positrons at a center-of-mass energy of approximately 10 GeV. The energy of the accelerator was chosen before the first three bottom quark Upsilon resonances were discovered between 9.4 GeV and 10.4 GeV in 1977. The fourth Υ resonance, the Υ(4S), was slightly above the threshold for, and therefore ideal for the study of, B meson production.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

Tribimaximal mixing is a specific postulated form for the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lepton mixing matrix U. Tribimaximal mixing is defined by a particular choice of the matrix of moduli-squared of the elements of the PMNS matrix as follows:

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while the hypothetical gravity-bearing particle, the graviton, can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) was an instrument used in a scientific experiment for detecting tau neutrinos from muon neutrino oscillations. The experiment is a collaboration between CERN in Geneva, Switzerland, and the Laboratori Nazionali del Gran Sasso (LNGS) in Gran Sasso, Italy and uses the CERN Neutrinos to Gran Sasso (CNGS) neutrino beam.

<span class="mw-page-title-main">Antonio Ereditato</span> Italian physicist

Antonio Ereditato is an Italian physicist, currently Research Professor at the University of Chicago, associate researcher at Fermilab, Batavia, USA, and Emeritus professor at the University of Bern, Switzerland, where he has been Director of the Laboratory for High Energy Physics from 2006 to 2020. From 2021 to 2022 Ereditato has been Visiting Professor at the Yale University, USA. He carried out research activities in the field of experimental neutrino physics, of weak interactions and strong interactions with experiments conducted at CERN, in Japan, at Fermilab in United States and at the LNGS in Italy. Ereditato has accomplished several R&D studies on particle detectors: wire chambers, calorimeters, time projection chambers, nuclear emulsions, detectors for medical applications.

<span class="mw-page-title-main">Kim Sun-kee</span>

Kim Sun-kee is a South Korean physicist. He is professor in Seoul National University and director of the Korea Invisible Mass Search. He was the first director of the Rare Isotope Science Project within the Institute for Basic Science and is a member of the Korean Academy of Science and Technology.

<span class="mw-page-title-main">David B. Cline</span> American particle physicist

]

<span class="mw-page-title-main">FASER experiment</span> 2022 particle physics experiment at the Large Hadron Collider at CERN

FASER is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new light and weakly coupled elementary particles, and to detect and study the interactions of high-energy collider neutrinos. In 2023, FASER and SND@LHC reported the first observation of collider neutrinos.

An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources.

References

  1. 1 2 3 K. Kodama et al. (DONUT Collaboration) (2001). "Observation of tau neutrino interactions". Physics Letters B . 504 (3): 218–224. arXiv: hep-ex/0012035 . Bibcode:2001PhLB..504..218D. doi: 10.1016/S0370-2693(01)00307-0 .
  2. 1 2 "Physicists Find First Direct Evidence for Tau Neutrino at Fermilab" (Press release). Fermilab. 20 July 2000.
  3. 1 2 K. Kodama et al. (DONUT Collaboration) (2008). "A first measurement of the interaction cross section of the tau neutrino". Physical Review D . 78 (5): 052002. arXiv: 0711.0728 . Bibcode:2008PhRvD..78e2002K. doi:10.1103/PhysRevD.78.052002. S2CID   118667527.
  4. R. Schwienhorst et al. (DONUT Collaboration) (2001). "A new upper limit for the tau-neutrino magnetic moment". Physics Letters B . 513 (1–2): 23–29. arXiv: hep-ex/0102026 . Bibcode:2001PhLB..513...23D. doi: 10.1016/S0370-2693(01)00746-8 .