ISOLDE Decay Station experiment

Last updated
Isotope Separator On Line Device
(ISOLDE)
List of ISOLDE experimental setups
COLLAPS, CRIS, EC-SLI, IDS, ISS, ISOLTRAP, LUCRECIA, Miniball, MIRACLS, SEC, VITO, WISArD
Other facilities
MEDICIS Medical Isotopes Collected from ISOLDE
508Solid State Physics Laboratory
Recently upgraded IDS setup in the ISOLDE facility IDS new.jpg
Recently upgraded IDS setup in the ISOLDE facility

The ISOLDE Decay Station (IDS) is a permanent experiment located in the ISOLDE facility at CERN. The purpose of the experiment is to measure decay properties of radioactive isotopes using spectroscopy techniques for a variety of applications, including nuclear engineering and astrophysics. [1] The experimental setup has been operational since 2014. [2]

Contents

Experiment systems can be coupled to the station for different decay measurements, using techniques such as fast timing, and time-of-flight. [3] [4] The IDS is able to study a range of nuclei, from light to heavy.

Background

Fast detectors with fast-timing electronics are needed to overcome the short nuclear lifetimes of radioisotopes. This method is known as the fast-timing technique, and is used for sequential decay chains by measuring time differences and delays. [5] The detectors used in this technique must be able to accurately measure the time a particle is detected, leading to a fast response time. Scintillation detectors and photomultiplier tubes (PMTs) are most often employed for this technique. [6]

In charged-particle spectroscopy, detectors are used to determine the position and energy of charged particle, as they create measurable electron-hole pairs when they pass through. As neutrons are not charged particles, to measure their motion, neutron scattering processes must be observed. Time-of-flight detectors can be used to measure the time if takes for a neutron to travel from a sample to the detector, and calculate the neutron's energy. [7] Alternatively, scintillation detectors are also used to determine the neutron's energy, by converting the energy to photons and measuring the intensity of the produced light. [8]

Experiment setup

The RC4 beamline in the ISOLDE facility, which can use the beam from either General Purpose Separator (GPS) or High Resolution Separator (HRS), is connected to the IDS. [9] The ion beam is collimated and, in a vacuum chamber, is implanted on tape, which is moved either manually or automatically depending on the specified implantation time. [10] A movable Faraday cup is located at the entrance and exit of the vacuum chamber. [11]

A high-purity germanium (HPGe) detector for the IDS experiment IDS HPGe detector.jpg
A high-purity germanium (HPGe) detector for the IDS experiment

The base IDS setup consists of four high-purity germanium (HPGe) clover detectors, which can be retracted and inserted manually and one HPGe Miniball cluster detector. These detectors form a gamma detector array with good efficiency and energy resolution. [12] [2] Each detector has a liquid nitrogen cooling canister, and consists of four HPGe crystals. In April 2023, a new support structure was installed at IDS, which allowed up to 15 extra detectors to be mounted at various angles and distances. [1] The Data Acquisition System (DAQ) used to read data from the experiment, consists of a dedicated NUTAQ system. [2] [1]

The specific configurations of the IDS setup correspond to different experimental purposes. These configurations include: high efficiency beta-gamma, fast-timing, charged-particle spectroscopy, and neutron spectroscopy. [13] [14] [15] [16]

High-efficiency beta-gamma setup

The standard high beta-gamma efficiency configuration of the IDS consists of five HPGe clover detectors, one placed in very close proximity (60 mm) to the implantation point, and the rest slightly further away (75 mm). Signals are induced in a plastic scintillator by beta particles, which are read by two PMTs. [3]

Fast-timing setup

The standard fast-timing spectroscopy set-up consists of a thin plastic scintillator to measure beta particles, two LaBr3(Ce) detectors, and four HPGe clover detectors. This method has high precision measurements for low-intensity beams and can achieve good efficiency and time resolution. [14]

Charged-particle spectroscopy setup

The standard IDS charged-particle spectroscopy setup consists of a silicon detector array surrounding the tape onto which the beam is implanted. Around this array, the four HPGe clover detectors are placed, which allows high-efficiency detection of both charged particles and gamma rays. [17]

Neutron spectroscopy setup

The IDS neutron spectroscopy setup, based on the VANDLE (Versatile Array of Neutron Detectors at Low Energy) detector, is dedicated to detection of neutron time-of-flight. The setup consists of three scintillating detector modules of different sizes, with the scintiliating plastic bars coupled to PMTs. [18]

Results

The results from the IDS permanent experimental setup are useful for multiple areas of physics, in particularly for astrophysics. The experimental data taken by the IDS when measuring the probability of a particular delayed alpha decay, improved upon its previous result. [9] This nuclear reaction is one that occurs in red giant stars, and is related to stellar evolution. [19] [20]

Results from experiments performed using IDS, have also been used to study isotope properties as well as confirm theoretical models. [21] [22]

In 2023, a multiple-particle emission experiment was successful performed at the IDS for the first time. [23] [11] The aim of the analysis for this experiment is to study a specific decay channel that leads to gamma ray de-excitations from excited states of 28Si. [11]

Related Research Articles

<span class="mw-page-title-main">Double beta decay</span> Type of radioactive decay

In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons.

<span class="mw-page-title-main">Neutrinoless double beta decay</span> A nuclear physics process that has yet to observed

Neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found.

<span class="mw-page-title-main">ISOLDE</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the centre of the CERN accelerator complex on the Franco-Swiss border. Created in 1964, the ISOLDE facility started delivering radioactive ion beams (RIBs) to users in 1967. Originally located at the Synchro-Cyclotron (SC) accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). ISOLDE is currently the longest-running facility in operation at CERN, with continuous developments of the facility and its experiments keeping ISOLDE at the forefront of science with RIBs. ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and sixteen (mostly) European countries. As of 2019, close to 1,000 experimentalists around the world are coming to ISOLDE to perform typically 50 different experiments per year.

<span class="mw-page-title-main">Kamioka Liquid Scintillator Antineutrino Detector</span> Neutrino oscillation experiment in Japan

The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) is an electron antineutrino detector at the Kamioka Observatory, an underground neutrino detection facility in Hida, Gifu, Japan. The device is situated in a drift mine shaft in the old KamiokaNDE cavity in the Japanese Alps. The site is surrounded by 53 Japanese commercial nuclear reactors. Nuclear reactors produce electron antineutrinos () during the decay of radioactive fission products in the nuclear fuel. Like the intensity of light from a light bulb or a distant star, the isotropically-emitted flux decreases at 1/R2 per increasing distance R from the reactor. The device is sensitive up to an estimated 25% of antineutrinos from nuclear reactors that exceed the threshold energy of 1.8 megaelectronvolts (MeV) and thus produces a signal in the detector.

Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).

<span class="mw-page-title-main">Isotopes of silicon</span> Nuclides with atomic number of 14 but with different mass numbers

Silicon (14Si) has 23 known isotopes, with mass numbers ranging from 22 to 44. 28Si, 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years, and it decays by beta emission to 32P and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.

<span class="mw-page-title-main">Neutron detection</span>

Neutron detection is the effective detection of neutrons entering a well-positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used and to the electronics used in the detection setup. Further, the hardware setup also defines key experimental parameters, such as source-detector distance, solid angle and detector shielding. Detection software consists of analysis tools that perform tasks such as graphical analysis to measure the number and energies of neutrons striking the detector.

Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutrino detectors, such as the first detection of antineutrinos in the Cowan–Reines neutrino experiment, or in neutrino experiments such as KamLAND and Borexino. It is an essential process to experiments involving low-energy neutrinos such as those studying neutrino oscillation, reactor neutrinos, sterile neutrinos, and geoneutrinos.

The Enriched Xenon Observatory (EXO) is a particle physics experiment searching for neutrinoless double beta decay of xenon-136 at WIPP near Carlsbad, New Mexico, U.S.

<span class="mw-page-title-main">DEAP</span> Dark matter search experiment

DEAP is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse-shape of argon. A first-generation detector (DEAP-1) with a 7 kg target mass was operated at Queen's University to test the performance of pulse-shape discrimination at low recoil energies in liquid argon. DEAP-1 was then moved to SNOLAB, 2 km below Earth's surface, in October 2007 and collected data into 2011.

<span class="mw-page-title-main">Total absorption spectroscopy</span>

Total absorption spectroscopy is a measurement technique that allows the measurement of the gamma radiation emitted in the different nuclear gamma transitions that may take place in the daughter nucleus after its unstable parent has decayed by means of the beta decay process. This technique can be used for beta decay studies related to beta feeding measurements within the full decay energy window for nuclei far from stability.

A geoneutrino is a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravity. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.

The diffuse supernova neutrino background(DSNB) is a theoretical population of neutrinos (and anti-neutrinos) cumulatively originating from all core-collapse supernovae events throughout the history of the universe. Though it has not yet been directly detected, the DSNB is theorized to be isotropic and consists of neutrinos with typical energies on the scale of 107 eV. Current detection efforts are limited by the influence of background noise in the search for DSNB neutrinos and are therefore limited to placing limits on the parameters of the DSNB, namely the neutrino flux. Restrictions on these parameters have gotten more strict in recent years, but many researchers are looking to make direct observations in the near future with next generation detectors. The DSNB is not to be confused with the cosmic neutrino background (CNB), which is comprised by relic neutrinos that were produced during the Big Bang and have much lower energies (10−4 to 10−6 eV).

<span class="mw-page-title-main">COLLAPS experiment</span>

The COLinear LAser SPectroscopy (COLLAPS) experiment is located in the ISOLDE facility at CERN. The purpose of the experiment is to investigate ground and isomeric state properties of exotic, short lived nuclei, including spins, electro-magnetic moments and charge radii. The experiment has been operating since the late 1970s, and is the oldest active experiment at ISOLDE.

<span class="mw-page-title-main">ISOLDE Solenoidal Spectrometer experiment</span>

The ISOLDE Solenoidal Spectrometer (ISS) experiment is a permanent experimental setup located in the ISOLDE facility at CERN. By using an ex-MRI magnet, heavy radioactive ion beams (RIBs) produced by the HIE-ISOLDE post-accelerator are directed at a light target and the kinematics of the reaction is measured. The purpose of the experiment is to measure properties of atomic nuclei replicating the conditions present in some astrophysical processes, such as the production of chemical elements in stars. The experiment will also produce results that provide a better understanding of nucleon-nucleon interactions in highly-unstable, very radioactive (exotic) nuclei.

<span class="mw-page-title-main">ISOLTRAP experiment</span>

The high-precision mass spectrometer ISOLTRAP experiment is a permanent experimental setup located at the ISOLDE facility at CERN. The purpose of the experiment is to make precision mass measurements using the time-of-flight (ToF) detection technique. Studying nuclides and probing nuclear structure gives insight into various areas of physics, including astrophysics.

<span class="mw-page-title-main">LUCRECIA experiment</span>

The LUCRECIA experiment is a permanent experimental setup at the ISOLDE facility at CERN. The purpose of LUCRECIA is to analyse nuclear structure and use this to confirm theoretical models and make stellar predictions. The experiment is based on a Total Absorption gamma Spectrometer (TAS) designed to measure beta ray feeding.

<span class="mw-page-title-main">Miniball experiment</span>

The Miniballexperiment is a gamma-ray spectroscopy setup regularly located in the ISOLDE facility at CERN, along with other locations including GSI, Cologne, PSI and RIKEN (HiCARI). Miniball is a high-resolution germanium detector array, specifically designed to work with low-intensity radioactive ion beams (RIB) post-accelerated by HIE-ISOLDE, to analyse the decays of short-lived nuclei with the capability of Doppler correction. The array has been used for successful Coulomb-excitation and transfer-reaction experiments with exotic RIBs. Results from Miniball experiments have been used to determine and probe nuclear structure.

<span class="mw-page-title-main">SEC experiment</span>

The Scattering Experiments Chamber (SEC) experiment is a permanent experimental setup located in the ISOLDE facility at CERN. The station facilitates diversified reaction experiments, especially for studying low-lying resonances in light atomic nuclei via transfer reactions. SEC does not detect gamma radiation, and therefore is complementary to the ISOLDE Solenoidal Spectrometer (ISS) and Miniball experiments.

<span class="mw-page-title-main">VITO experiment</span>

The Versatile Ion polarisation Technique Online (VITO) experiment is a permanent experimental setup located in the ISOLDE facility at CERN, in the form of a beamline. The purpose of the beamline is to perform a wide range of studies using spin-polarised short-lived atomic nuclei. VITO uses circularly-polarised laser light to obtain polarised radioactive beams of different isotopes delivered by ISOLDE. These have already been used for weak-interaction studies, biological investigations, and more recently nuclear structure research. The beamline is located at the site of the former Ultra High Vacuum (UHV) beamline hosting ASPIC.

References

  1. 1 2 3 "ISOLDE Decay Station (IDS) | ISOLDE". isolde.cern. Retrieved 2023-07-21.
  2. 1 2 3 Razvan, Lics (3 Oct 2017). "Development of the ISOLDE Decay Station and γ spectroscopic studies of exotic nuclei near the N=20 "Island of Inversion"". Cern-Isolde.
  3. 1 2 IDS Collaboration; Lică, R.; Mach, H.; Fraile, L. M.; Gargano, A.; Borge, M. J. G.; Mărginean, N.; Sotty, C. O.; Vedia, V.; Andreyev, A. N.; Benzoni, G.; Bomans, P.; Borcea, R.; Coraggio, L.; Costache, C. (2016-04-04). "Fast-timing study of the $l$-forbidden $1/{2}^{+}\ensuremath{\rightarrow}3/{2}^{+} M1$ transition in $^{129}\mathrm{Sn}$". Physical Review C. 93 (4): 044303. doi:10.1103/PhysRevC.93.044303. hdl: 10138/164553 .
  4. Paulauskas, S. V.; Madurga, M.; Grzywacz, R.; Miller, D.; Padgett, S.; Tan, H. (2014-02-11). "A digital data acquisition framework for the Versatile Array of Neutron Detectors at Low Energy (VANDLE)". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 737: 22–28. doi:10.1016/j.nima.2013.11.028. ISSN   0168-9002.
  5. Phrompao, Jindaratsamee. "Test and calibration of the IDS fast-timing electronics" (PDF). Chiang Mai University, Thailand.
  6. Deloncle, I; Roussière, B; Cardona, M A; Hojman, D; Kiener, J; Petkov, P; Tonev, D; Venkova, Ts (2010-01-01). "Fast timing: Lifetime measurements with LaBr 3 scintillators". Journal of Physics: Conference Series. 205: 012044. doi: 10.1088/1742-6596/205/1/012044 . hdl: 11336/101874 . ISSN   1742-6596.
  7. "Neutron Spectroscopy". Spectroscopy. Spectroscopy-12-01-2010. 25 (12). 2010-12-01.
  8. Scionix (8 Oct 2013). "Neutron detection with scintillators" (PDF). scionix.nl. Retrieved 25 July 2023.
  9. 1 2 Kirsebom, O. S.; Tengblad, O.; Lica, R.; Munch, M.; Riisager, K.; Fynbo, H. O. U.; Borge, M. J. G.; Madurga, M.; Marroquin, I.; Andreyev, A. N.; Berry, T. A.; Christensen, E. R.; Fernández, P. Díaz; Doherty, D. T.; Van Duppen, P. (2018-10-03). "First Accurate Normalization of the $\ensuremath{\beta}$-delayed $\ensuremath{\alpha}$ Decay of $^{16}\mathrm{N}$ and Implications for the $^{12}\mathrm{C}(\ensuremath{\alpha},\ensuremath{\gamma})^{16}\mathrm{O}$ Astrophysical Reaction Rate". Physical Review Letters. 121 (14): 142701. arXiv: 1804.02040 . doi: 10.1103/PhysRevLett.121.142701 . PMID   30339438.
  10. Jenkinson, Megan (September 2017). "Laser Spectroscopy Of Neutron-Deficient Bismuth Isotopes" (PDF). University of York.
  11. 1 2 3 Marroquin, I.; Borge, M.J.G.; Ciemny, A.A.; de Witte, H.; Fraile, L.M.; Fynbo, H.O.U.; Garzón-Camacho, A.; Howard, A.; Johansson, H.; Jonson, B.; Kirsebom, O.S.; Koldste, G.T.; Lica, R.; Lund, M.V.; Madurga, M. (2016). "Multi-particle Emission from ${^{31}}$Ar at ISOLDE". Acta Physica Polonica B. 47 (3): 747. doi: 10.5506/APhysPolB.47.747 . hdl: 10261/151807 . ISSN   0587-4254.
  12. "Clover™ Detectors Four Coaxial Germanium Detectors". Mirion. Retrieved 2023-07-21.
  13. Lică, R.; Rotaru, F.; Borge, M. J. G.; Grévy, S.; Negoiţă, F.; Poves, A.; Sorlin, O.; Andreyev, A. N.; Borcea, R.; Costache, C.; De Witte, H.; Fraile, L. M.; Greenlees, P. T.; Huyse, M.; Ionescu, A. (2019-09-11). "Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34". Physical Review C. 100 (3): 034306. doi:10.1103/PhysRevC.100.034306. hdl: 10138/312141 . ISSN   2469-9985. S2CID   201698163.
  14. 1 2 Fraile, L M (2017-09-01). "Fast-timing spectroscopy at ISOLDE". Journal of Physics G: Nuclear and Particle Physics. 44 (9): 094004. doi: 10.1088/1361-6471/aa8217 . ISSN   0954-3899.
  15. Lynch, K. M.; Cocolios, T. E.; Althubiti, N.; Farooq-Smith, G. J.; Gins, W.; Smith, A. J. (2017-02-01). "A simple decay-spectroscopy station at CRIS-ISOLDE". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 844: 14–18. doi: 10.1016/j.nima.2016.11.024 . ISSN   0168-9002.
  16. Xu, Z. Y.; Madurga, M.; Grzywacz, R.; King, T. T.; Algora, A.; Andreyev, A. N.; Benito, J.; Berry, T.; Borge, M. J. G.; Costache, C.; De Witte, H.; Fijalkowska, A.; Fraile, L. M.; Fynbo, H. O. U.; Gottardo, A. (2023-07-14). "$\ensuremath{\beta}$-delayed neutron spectroscopy of $^{133}\mathrm{In}$". Physical Review C. 108 (1): 014314. arXiv: 2303.12173 . doi:10.1103/PhysRevC.108.014314. S2CID   259919994.
  17. IDS Collaboration; Lund, M. V.; Andreyev, A.; Borge, M. J. G.; Cederkäll, J.; De Witte, H.; Fraile, L. M.; Fynbo, H. O. U.; Greenlees, P. T.; Harkness-Brennan, L. J.; Howard, A. M.; Huyse, M.; Jonson, B.; Judson, D. S.; Kirsebom, O. S. (Oct 2016). "Beta-delayed proton emission from 20Mg". The European Physical Journal A . 52 (10). arXiv: 1506.04515 . doi:10.1140/epja/i2016-16304-x. ISSN   1434-6001. S2CID   254112622.
  18. José Rafael Arce, G. (26 August 2015). "On the simulation of limit thresholds for ISOLDE decay station neutron detector" (PDF). Isotope Mass Separator On-Line Facility (ISOLDE) and Universidad de Costa Rica.
  19. "The ISOLDE Decay Station (IDS) gives improved results on delayed alpha decay for 16N. New paper in Physical Review Letters". phys.au.dk. 2018-09-28. Retrieved 2023-07-25.
  20. Buchmann, L.; Ruprecht, G.; Ruiz, C. (2009-10-21). "$\ensuremath{\beta}$-delayed $\ensuremath{\alpha}$ decay of $^{16}\mathrm{N}$". Physical Review C. 80 (4): 045803. doi:10.1103/PhysRevC.80.045803.
  21. IDS Collaboration; Stryjczyk, M.; Andel, B.; Andreyev, A. N.; Cubiss, J.; Pakarinen, J.; Rezynkina, K.; Van Duppen, P.; Antalic, S.; Berry, T.; Borge, M. J. G.; Clisu, C.; Cox, D. M.; De Witte, H.; Fraile, L. M. (2020-08-18). "Decay studies of the long-lived states in $^{186}\mathrm{Tl}$". Physical Review C. 102 (2): 024322. doi:10.1103/PhysRevC.102.024322. hdl: 10261/225991 . S2CID   219260371.
  22. IDS Collaboration; Lică, R.; Benzoni, G.; Rodríguez, T. R.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Morales, A. I.; Madurga, M.; Sotty, C. O.; Vedia, V.; De Witte, H.; Benito, J.; Bernard, R. N.; Berry, T. (2018-02-05). "Evolution of deformation in neutron-rich Ba isotopes up to $A=150$". Physical Review C. 97 (2): 024305. doi:10.1103/PhysRevC.97.024305. hdl: 10138/234747 .
  23. "Greybook". greybook.cern.ch. Retrieved 2023-07-25.