Ion beam

Last updated

A small ion beam rocket being tested by NASA. Ion Beam - GPN-2000-000383.jpg
A small ion beam rocket being tested by NASA.

An ion beam is a type of charged particle beam consisting of ions. Ion beams have many uses in electronics manufacturing (principally ion implantation) and other industries. A variety of ion beam sources exists, some derived from the mercury vapor thrusters developed by NASA in the 1960s. The most common ion beams are of singly-charged ions.

Contents

Units

Ion current density is typically measured in mA/cm2, and ion energy in eV. The use of eV is convenient for converting between voltage and energy, especially when dealing with singly-charged ion beams, as well as converting between energy and temperature (1 eV = 11600 K). [1]

Broad-beam ion sources

Most commercial applications use two popular types of ion source, gridded and gridless, which differ in current and power characteristics and the ability to control ion trajectories. [1] In both cases electrons are needed to generate an ion beam. The most common electron emitters are hot filament and hollow cathode.

Gridded ion source

In a gridded ion source, DC or RF discharge are used to generate ions, which are then accelerated and decimated using grids and apertures. Here, the DC discharge current or the RF discharge power are used to control the beam current.

The ion current density that can be accelerated using a gridded ion source is limited by the space charge effect, which is described by Child's law:

where is the voltage between the grids, is the distance between the grids, and is the ion mass.

The grids are placed as closely as possible to increase the current density, typically . The ions used have a significant impact on the maximum ion beam current, since . Everything else being equal, the maximum ion beam current with krypton is only 69% the maximum ion current of an argon beam, and with xenon the ratio drops to 55%. [1]

Gridless ion sources

In a gridless ion source, ions are generated by a flow of electrons (no grids). The most common gridless ion source is the end-Hall ion source. Here, the discharge current and the gas flow are used to control the beam current.

Applications

Ion beam etching or sputtering

Carl Zeiss Crossbeam 550 - combines a field emission scanning electron microscope (FE-SEM) with a focused ion beam (FIB). ZEISS Crossbeam 550- Your FIB-SEM for High Throughput 3D Analysis and Sample Preparation (33411552526).jpg
Carl Zeiss Crossbeam 550 – combines a field emission scanning electron microscope (FE-SEM) with a focused ion beam (FIB).
Nanofluidics channels fabricated with a Zeiss Crossbeam 550 L, in a silicon master stamp Nanofluidics channels (33411553986).jpg
Nanofluidics channels fabricated with a Zeiss Crossbeam 550 L, in a silicon master stamp

One type of ion beam source is the duoplasmatron. Ion beams can be used for sputtering or ion beam etching and for ion beam analysis.

Ion beam application, etching, or sputtering, is a technique conceptually similar to sandblasting, but using individual atoms in an ion beam to ablate a target. Reactive ion etching is an important extension that uses chemical reactivity to enhance the physical sputtering effect.

In a typical use in semiconductor manufacturing, a mask can selectively expose a layer of photoresist on a substrate made of a semiconductor material such as a silicon dioxide or gallium arsenide wafer. The wafer is developed, and for a positive photoresist, the exposed portions are removed in a chemical process. The result is a pattern left on the surface areas of the wafer that had been masked from exposure. The wafer is then placed in a vacuum chamber, and exposed to the ion beam. The impact of the ions erodes the target, abrading away the areas not covered by the photoresist.

Focused ion beam (FIB) instruments have numerous applications for characterization of thin-film devices. Using a focused, high-brightness ion beam in a scanned raster pattern, material is removed (sputtered) in precise rectilinear patterns revealing a two-dimensional, or stratigraphic profile of a solid material. The most common application is to verify the integrity of the gate oxide layer in a CMOS transistor. A single excavation site exposes a cross section for analysis using a scanning electron microscope. Dual excavations on either side of a thin lamella bridge are utilized for preparing transmission electron microscope samples. [2]

Another common use of FIB instruments is for design verification and/or failure analysis of semiconductor devices. Design verification combines selective material removal with gas-assisted material deposition of conductive, dielectric, or insulating materials. Engineering prototype devices may be modified using the ion beam in combination with gas-assisted material deposition in order to rewire an integrated circuit's conductive pathways. The techniques are effectively used to verify the correlation between the CAD design and the actual functional prototype circuit, thereby avoiding the creation of a new mask for the purpose of testing design changes.

Materials science use sputtering for extending surface analytical techniques such as secondary ion mass spectrometry or electron spectroscopy (XPS, AES) so that they can depth profile them.

Biology

In radiobiology a broad or focused ion beam is used to study mechanisms of inter- and intra- cellular communication, signal transduction and DNA damage and repair.

Medicine

Ion beams are also used in particle therapy, most often in the treatment of cancer.

Space applications

Ion beams produced by ion and plasma thrusters on board a spacecraft can be used to transmit a force to a nearby object (e.g. another spacecraft, an asteroid, etc.) that is irradiated by the beam. This innovative propulsion technique named Ion Beam Shepherd has been shown to be effective in the area of active space debris removal as well as asteroid deflection.

High-energy ion beams

High-energy ion beams produced by particle accelerators are used in atomic physics, nuclear physics and particle physics.

Weaponry

The use of ion beams as a particle-beam weapon is theoretically possible, but has not been demonstrated. Electron beam weapons have been tested by the U.S. Navy in the early 20th century, but the hose instability effect prevents these from being accurate at a distance of over approximately 30 inches. See particle-beam weapon for more information on this type of weapon.

See also

Related Research Articles

<span class="mw-page-title-main">Ion implantation</span> Use of ions to cause chemical changes

Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as in materials science research. The ions can alter the elemental composition of the target if they stop and remain in the target. Ion implantation also causes chemical and physical changes when the ions impinge on the target at high energy. The crystal structure of the target can be damaged or even destroyed by the energetic collision cascades, and ions of sufficiently high energy can cause nuclear transmutation.

<span class="mw-page-title-main">MEMS</span> Very small devices that incorporate moving components

MEMS is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size, and MEMS devices generally range in size from 20 micrometres to a millimetre, although components arranged in arrays can be more than 1000 mm2. They usually consist of a central unit that processes data and several components that interact with the surroundings.

Photolithography is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.

<span class="mw-page-title-main">Photoresist</span> Light-sensitive material used in making electronics

A photoresist is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronics industry.

<span class="mw-page-title-main">Semiconductor device fabrication</span> Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips that are present in everyday electronic devices. It is a multiple-step photolithographic and physio-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

<span class="mw-page-title-main">Sputtering</span> Emission of surface atoms through energetic particle bombardment

In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and can be an unwelcome source of wear in precision components. However, the fact that it can be made to act on extremely fine layers of material is utilised in science and industry—there, it is used to perform precise etching, carry out analytical techniques, and deposit thin film layers in the manufacture of optical coatings, semiconductor devices and nanotechnology products. It is a physical vapor deposition technique.

Electron cyclotron resonance (ECR) is a phenomenon observed in plasma physics, condensed matter physics, and accelerator physics. It happens when the frequency of incident radiation coincides with the natural frequency of rotation of electrons in magnetic fields. A free electron in a static and uniform magnetic field will move in a circle due to the Lorentz force. The circular motion may be superimposed with a uniform axial motion, resulting in a helix, or with a uniform motion perpendicular to the field resulting in a cycloid. The angular frequency of this cyclotron motion for a given magnetic field strength B is given by

Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions that dislodge portions of the material from the exposed surface. A common type of dry etching is reactive-ion etching. Unlike with many of the wet chemical etchants used in wet etching, the dry etching process typically etches directionally or anisotropically.

In semiconductor fabrication, a resist is a thin layer used to transfer a circuit pattern to the semiconductor substrate which it is deposited upon. A resist can be patterned via lithography to form a (sub)micrometer-scale, temporary mask that protects selected areas of the underlying substrate during subsequent processing steps. The material used to prepare said thin layer is typically a viscous solution. Resists are generally proprietary mixtures of a polymer or its precursor and other small molecules that have been specially formulated for a given lithography technology. Resists used during photolithography are called photoresists.

<span class="mw-page-title-main">Stepper</span> Photolithographic Tool

A stepper or wafer stepper is a device used in the manufacture of integrated circuits (ICs). It is an essential part of the process of photolithography, which creates millions of microscopic circuit elements on the surface of silicon wafers out of which chips are made. It is similar in operation to a slide projector or a photographic enlarger. The ICs that are made form the heart of computer processors, memory chips, and many other electronic devices.

<span class="mw-page-title-main">Focused ion beam</span> Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

<span class="mw-page-title-main">Microfabrication</span> Fabrication at micrometre scales and smaller

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot at a sample. The plasma source, known as etch species, can be either charged (ions) or neutral. During the process, the plasma generates volatile etch products at room temperature from the chemical reactions between the elements of the material etched and the reactive species generated by the plasma. Eventually the atoms of the shot element embed themselves at or just below the surface of the target, thus modifying the physical properties of the target.

In semiconductor electronics fabrication technology, a self-aligned gate is a transistor manufacturing approach whereby the gate electrode of a MOSFET is used as a mask for the doping of the source and drain regions. This technique ensures that the gate is naturally and precisely aligned to the edges of the source and drain.

<span class="mw-page-title-main">Etching (microfabrication)</span> Technique in microfabrication used to remove material and create structures

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module in fabrication, and every wafer undergoes many etching steps before it is complete.

<span class="mw-page-title-main">Sputter deposition</span> Method of thin film application

Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. Sputtered atoms ejected from the target have a wide energy distribution, typically up to tens of eV. The sputtered ions can ballistically fly from the target in straight lines and impact energetically on the substrates or vacuum chamber. Alternatively, at higher gas pressures, the ions collide with the gas atoms that act as a moderator and move diffusively, reaching the substrates or vacuum chamber wall and condensing after undergoing a random walk. The entire range from high-energy ballistic impact to low-energy thermalized motion is accessible by changing the background gas pressure. The sputtering gas is often an inert gas such as argon. For efficient momentum transfer, the atomic weight of the sputtering gas should be close to the atomic weight of the target, so for sputtering light elements neon is preferable, while for heavy elements krypton or xenon are used. Reactive gases can also be used to sputter compounds. The compound can be formed on the target surface, in-flight or on the substrate depending on the process parameters. The availability of many parameters that control sputter deposition make it a complex process, but also allow experts a large degree of control over the growth and microstructure of the film.

The lift-off process in microstructuring technology is a method of creating structures (patterning) of a target material on the surface of a substrate using a sacrificial material . It is an additive technique as opposed to more traditional subtracting technique like etching. The scale of the structures can vary from the nanoscale up to the centimeter scale or further, but are typically of micrometric dimensions.

<span class="mw-page-title-main">Plasma (physics)</span> State of matter

Plasma is one of four fundamental states of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.

Ion milling is a specialized physical etching technique that is a crucial step in the preparation of material analysis techniques. After a specimen goes through ion milling, the surface becomes much smoother and more defined, which allows scientists to study the material much easier. The ion mill generates high-energy particles to remove material off the surface of a specimen, similar to how sand and dust particles wear away at rocks in a canyon to create a smooth surface. Relative to other techniques, ion milling creates much less surface damage, which makes it perfect for surface-sensitive analytical techniques. This article discusses the principle, equipment, applications, and significance of ion milling.

Glossary of microelectronics manufacturing terms

References

  1. 1 2 3 Kaufman, Harold R. (2011). Applications of Broad-Beam Ion Sources: An Introduction (PDF). Fort Collins, Colorado 80524: Kaufman & Robinson, Inc. ISBN   9780985266400.{{cite book}}: CS1 maint: location (link)
  2. Giannuzzi, Lucille A., Stevie, Fred A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, Springer 2005 – 357 pages