Rutherford backscattering spectrometry

Last updated

Rutherford backscattering spectrometry (RBS) is an analytical technique used in materials science. Sometimes referred to as high-energy ion scattering (HEIS) spectrometry, RBS is used to determine the structure and composition of materials by measuring the backscattering of a beam of high energy ions (typically protons or alpha particles) impinging on a sample.

Contents

Geiger–Marsden experiment

Left: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed.
Right: Observed results: a small portion of the particles were deflected, indicating a small, concentrated positive charge. Geiger-Marsden experiment expectation and result.svg
Left: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed.
Right: Observed results: a small portion of the particles were deflected, indicating a small, concentrated positive charge.

Rutherford backscattering spectrometry is named after Lord Rutherford, a physicist sometimes referred to as the father of nuclear physics. Rutherford supervised a series of experiments carried out by Hans Geiger and Ernest Marsden between 1909 and 1914 studying the scattering of alpha particles through metal foils. While attempting to eliminate "stray particles" they believed to be caused by an imperfection in their alpha source, Rutherford suggested that Marsden attempt to measure backscattering from a gold foil sample. According to the then-dominant plum-pudding model of the atom, in which small negative electrons were spread through a diffuse positive region, backscattering of the high-energy positive alpha particles should have been nonexistent. At most small deflections should occur as the alpha particles passed almost unhindered through the foil. Instead, when Marsden positioned the detector on the same side of the foil as the alpha particle source, he immediately detected a noticeable backscattered signal. According to Rutherford, "It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you." [1]

Rutherford interpreted the result of the Geiger–Marsden experiment as an indication of a Coulomb collision with a single massive positive particle. This led him to the conclusion that the atom's positive charge could not be diffuse but instead must be concentrated in a single massive core: the atomic nucleus. Calculations indicated that the charge necessary to accomplish this deflection was approximately 100 times the charge of the electron, close to the atomic number of gold. This led to the development of the Rutherford model of the atom in which a positive nucleus made up of Ne positive particles, or protons, was surrounded by N orbiting electrons of charge -e to balance the nuclear charge. This model was eventually superseded by the Bohr atom, incorporating some early results from quantum mechanics.

If the energy of the incident particle is increased sufficiently, the Coulomb barrier is exceeded and the wavefunctions of the incident and struck particles overlap. This may result in nuclear reactions in certain cases, but frequently the interaction remains elastic, although the scattering cross-sections may fluctuate wildly as a function of energy and no longer be calculable analytically. This case is known as "Elastic (non-Rutherford) Backscattering Spectrometry" (EBS). There has recently been great progress in determining EBS scattering cross-sections, by solving Schrödinger's equation for each interaction[ citation needed ]. However, for the EBS analysis of matrices containing light elements, the utilization of experimentally measured [2] [3] scattering cross-section data is also considered to be a very credible option.

Basic principles

We describe Rutherford backscattering as an elastic, hard-sphere collision between a high kinetic energy particle from the incident beam (the projectile) and a stationary particle located in the sample (the target). Elastic in this context means that no energy is transferred between the incident particle and the stationary particle during the collision, and the state of the stationary particle is not changed. (Except that for a small amount of momentum, which is ignored.) Nuclear interactions are generally not elastic, since a collision may result in a nuclear reaction, with the release of considerable quantities of energy. Nuclear reaction analysis (NRA) is useful for detecting light elements. However, this is not Rutherford scattering. Considering the kinematics of the collision (that is, the conservation of momentum and kinetic energy), the energy E1 of the scattered projectile is reduced from the initial energy E0:

where k is known as the kinematical factor, and

[4]

where particle 1 is the projectile, particle 2 is the target nucleus, and is the scattering angle of the projectile in the laboratory frame of reference (that is, relative to the observer). The plus sign is taken when the mass of the projectile is less than that of the target, otherwise the minus sign is taken.

While this equation correctly determines the energy of the scattered projectile for any particular scattering angle (relative to the observer), it does not describe the probability of observing such an event. For that we need the differential cross-section of the backscattering event:

[4]

where and are the atomic numbers of the incident and target nuclei. This equation is written in the centre of mass frame of reference and is therefore not a function of the mass of either the projectile or the target nucleus.

The scattering angle in the laboratory frame of reference is not the same as the scattering angle in the centre of mass frame of reference (although for RBS experiments they are usually very similar). However, heavy ion projectiles can easily recoil lighter ions which, if the geometry is right, can be ejected from the target and detected. This is the basis of the Elastic Recoil Detection (ERD, with synonyms ERDA, FRS, HFS) technique. RBS often uses a He beam which readily recoils H, so simultaneous RBS/ERD is frequently done to probe the hydrogen isotope content of samples (although H ERD with a He beam above 1 MeV is not Rutherford: see http://www-nds.iaea.org/sigmacalc). For ERD the scattering angle in the lab frame of reference is quite different from that in the centre of mass frame of reference.

Heavy ions cannot backscatter from light ones: it is kinematically prohibited. The kinematical factor must remain real, and this limits the permitted scattering angle in the laboratory frame of reference. In ERD it is often convenient to place the recoil detector at recoil angles large enough to prohibit signal from the scattered beam. The scattered ion intensity is always very large compared to the recoil intensity (the Rutherford scattering cross-section formula goes to infinity as the scattering angle goes to zero), and for ERD the scattered beam usually has to be excluded from the measurement somehow.

The singularity in the Rutherford scattering cross-section formula is unphysical of course. If the scattering cross-section is zero it implies that the projectile never comes close to the target, but in this case it also never penetrates the electron cloud surrounding the nucleus either. The pure Coulomb formula for the scattering cross-section shown above must be corrected for this screening effect, which becomes more important as the energy of the projectile decreases (or, equivalently, its mass increases).

While large-angle scattering only occurs for ions which scatter off target nuclei, inelastic small-angle scattering can also occur off the sample electrons. This results in a gradual decrease in the kinetic energy of incident ions as they penetrate into the sample, so that backscattering off interior nuclei occurs with a lower "effective" incident energy. Similarly backscattered ions lose energy to electrons as they exit the sample. The amount by which the ion energy is lowered after passing through a given distance is referred to as the stopping power of the material and is dependent on the electron distribution. This energy loss varies continuously with respect to distance traversed, so that stopping power is expressed as

[5]

For high energy ions stopping power is usually proportional to ; however, precise calculation of stopping power is difficult to carry out with any accuracy.

Stopping power (properly, stopping force) has units of energy per unit length. It is generally given in thin film units, that is eV /(atom/cm2) since it is measured experimentally on thin films whose thickness is always measured absolutely as mass per unit area, avoiding the problem of determining the density of the material which may vary as a function of thickness. Stopping power is now known for all materials at around 2%, see http://www.srim.org.

Instrumentation

A single stage 2 MeV linear Van de Graaff particle accelerator, here opened for maintenance 2mv accelerator-MJC01.jpg
A single stage 2 MeV linear Van de Graaff particle accelerator, here opened for maintenance

An RBS instrument generally includes three essential components:

Two common source/acceleration arrangements are used in commercial RBS systems, working in either one or two stages. One-stage systems consist of a He+ source connected to an acceleration tube with a high positive potential applied to the ion source, and the ground at the end of the acceleration tube. This arrangement is simple and convenient, but it can be difficult to achieve energies of much more than 1 MeV due to the difficulty of applying very high voltages to the system.

Two-stage systems, or "tandem accelerators", start with a source of He ions and position the positive terminal at the center of the acceleration tube. A stripper element included in the positive terminal removes electrons from ions which pass through, converting He ions to He++ ions. The ions thus start out being attracted to the terminal, pass through and become positive, and are repelled until they exit the tube at ground. This arrangement, though more complex, has the advantage of achieving higher accelerations with lower applied voltages: a typical tandem accelerator with an applied voltage of 750 kV can achieve ion energies of over 2 MeV. [6]

Detectors to measure backscattered energy are usually silicon surface barrier detectors, a very thin layer (100 nm) of P-type silicon on an N-type substrate forming a p-n junction. Ions which reach the detector lose some of their energy to inelastic scattering from the electrons, and some of these electrons gain enough energy to overcome the band gap between the semiconductor valence and conduction bands. This means that each ion incident on the detector will produce some number of electron-hole pairs which is dependent on the energy of the ion. These pairs can be detected by applying a voltage across the detector and measuring the current, providing an effective measurement of the ion energy. The relationship between ion energy and the number of electron-hole pairs produced will be dependent on the detector materials, the type of ion and the efficiency of the current measurement; energy resolution is dependent on thermal fluctuations. After one ion is incident on the detector, there will be some dead time before the electron-hole pairs recombine in which a second incident ion cannot be distinguished from the first. [7]

Angular dependence of detection can be achieved by using a movable detector, or more practically by separating the surface barrier detector into many independent cells which can be measured independently, covering some range of angles around direct (180 degrees) back-scattering. Angular dependence of the incident beam is controlled by using a tiltable sample stage.

Composition and depth measurement

The energy loss of a backscattered ion is dependent on two processes: the energy lost in scattering events with sample nuclei, and the energy lost to small-angle scattering from the sample electrons. The first process is dependent on the scattering cross-section of the nucleus and thus on its mass and atomic number. For a given measurement angle, nuclei of two different elements will therefore scatter incident ions to different degrees and with different energies, producing separate peaks on an N(E) plot of measurement count versus energy. These peaks are characteristic of the elements contained in the material, providing a means of analyzing the composition of a sample by matching scattered energies to known scattering cross-sections. Relative concentrations can be determined by measuring the heights of the peaks.

The second energy loss process, the stopping power of the sample electrons, does not result in large discrete losses such as those produced by nuclear collisions. Instead it creates a gradual energy loss dependent on the electron density and the distance traversed in the sample. This energy loss will lower the measured energy of ions which backscatter from nuclei inside the sample in a continuous manner dependent on the depth of the nuclei. The result is that instead of the sharp backscattered peaks one would expect on an N(E) plot, with the width determined by energy and angular resolution, the peaks observed trail off gradually towards lower energy as the ions pass through the depth occupied by that element. Elements which only appear at some depth inside the sample will also have their peak positions shifted by some amount which represents the distance an ion had to traverse to reach those nuclei.

In practice, then, a compositional depth profile can be determined from an RBS N(E) measurement. The elements contained by a sample can be determined from the positions of peaks in the energy spectrum. Depth can be determined from the width and shifted position of these peaks, and relative concentration from the peak heights. This is especially useful for the analysis of a multilayer sample, for example, or for a sample with a composition which varies more continuously with depth.

This kind of measurement can only be used to determine elemental composition; the chemical structure of the sample cannot be determined from the N(E) profile. However, it is possible to learn something about this through RBS by examining the crystal structure. This kind of spatial information can be investigated by taking advantage of blocking and channeling.

Structural measurements: blocking and channeling

To fully understand the interaction of an incident beam of nuclei with a crystalline structure, it is necessary to comprehend two more key concepts: blocking and channeling .

When a beam of ions with parallel trajectories is incident on a target atom, scattering off that atom will prevent collisions in a cone-shaped region "behind" the target relative to the beam. This occurs because the repulsive potential of the target atom bends close ion trajectories away from their original path, and is referred to as blocking. The radius of this blocked region, at a distance L from the original atom, is given by

[8]

When an ion is scattered from deep inside a sample, it can then re-scatter off a second atom, creating a second blocked cone in the direction of the scattered trajectory. This can be detected by carefully varying the detection angle relative to the incident angle.

Channeling is observed when the incident beam is aligned with a major symmetry axis of the crystal. Incident nuclei which avoid collisions with surface atoms are excluded from collisions with all atoms deeper in the sample, due to blocking by the first layer of atoms. When the interatomic distance is large compared to the radius of the blocked cone, the incident ions can penetrate many times the interatomic distance without being backscattered. This can result in a drastic reduction of the observed backscattered signal when the incident beam is oriented along one of the symmetry directions, allowing determination of a sample's regular crystal structure. Channeling works best for very small blocking radii, i.e. for high-energy, low-atomic-number incident ions such as He+.

The tolerance for the deviation of the ion beam angle of incidence relative to the symmetry direction depends on the blocking radius, making the allowable deviation angle proportional to

[9]

While the intensity of an RBS peak is observed to decrease across most of its width when the beam is channeled, a narrow peak at the high-energy end of larger peak will often be observed, representing surface scattering from the first layer of atoms. The presence of this peak opens the possibility of surface sensitivity for RBS measurements.

Profiling of displaced atoms

In addition, channeling of ions can also be used to analyze a crystalline sample for lattice damage. [10] If atoms within the target are displaced from their crystalline lattice site, this will result in a higher backscattering yield in relation to a perfect crystal. By comparing the spectrum from a sample being analyzed to that from a perfect crystal, and that obtained at a random (non-channeling) orientation (representative of a spectrum from an amorphous sample), it is possible to determine the extent of crystalline damage in terms of a fraction of displaced atoms. Multiplying this fraction by the density of the material when amorphous then also gives an estimate for the concentration of displaced atoms. The energy at which the increased backscattering occurs can also be used to determine the depth at which the displaced atoms are and a defect depth profile can be built up as a result.

Surface sensitivity

While RBS is generally used to measure the bulk composition and structure of a sample, it is possible to obtain some information about the structure and composition of the sample surface. When the signal is channeled to remove the bulk signal, careful manipulation of the incident and detection angles can be used to determine the relative positions of the first few layers of atoms, taking advantage of blocking effects.

The surface structure of a sample can be changed from the ideal in a number of ways. The first layer of atoms can change its distance from subsequent layers (relaxation); it can assume a different two-dimensional structure than the bulk (reconstruction); or another material can be adsorbed onto the surface. Each of these cases can be detected by RBS. For example, surface reconstruction can be detected by aligning the beam in such a way that channeling should occur, so that only a surface peak of known intensity should be detected. A higher-than-usual intensity or a wider peak will indicate that the first layers of atoms are failing to block the layers beneath, i.e. that the surface has been reconstructed. Relaxations can be detected by a similar procedure with the sample tilted so the ion beam is incident at an angle selected so that first-layer atoms should block backscattering at a diagonal; that is, from atoms which are below and displaced from the blocking atom. A higher-than-expected backscattered yield will indicate that the first layer has been displaced relative to the second layer, or relaxed. Adsorbate materials will be detected by their different composition, changing the position of the surface peak relative to the expected position.

RBS has also been used to measure processes which affect the surface differently from the bulk by analyzing changes in the channeled surface peak. A well-known example of this is the RBS analysis of the premelting of lead surfaces by Frenken, Maree and van der Veen. In an RBS measurement of the Pb(110) surface, a well-defined surface peak which is stable at low temperatures was found to become wider and more intense as temperature increase past two-thirds of the bulk melting temperature. The peak reached the bulk height and width as temperature reached the melting temperature. This increase in the disorder of the surface, making deeper atoms visible to the incident beam, was interpreted as pre-melting of the surface, and computer simulations of the RBS process produced similar results when compared with theoretical pre-melting predictions. [11]

RBS has also been combined with nuclear microscopy, in which a focused ion beam is scanned across a surface in a manner similar to a scanning electron microscope. The energetic analysis of backscattered signals in this kind of application provides compositional information about the surface, while the microprobe itself can be used to examine features such as periodic surface structures. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Rutherford scattering</span> Elastic scattering of charged particles by the Coulomb force

In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering was first referred to as Coulomb scattering because it relies only upon the static electric (Coulomb) potential, and the minimum distance between particles is set entirely by this potential. The classical Rutherford scattering process of alpha particles against gold nuclei is an example of "elastic scattering" because neither the alpha particles nor the gold nuclei are internally excited. The Rutherford formula further neglects the recoil kinetic energy of the massive target nucleus.

<span class="mw-page-title-main">Scanning electron microscope</span> Type of electron microscope

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector. The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

<span class="mw-page-title-main">Inelastic collision</span> Collision in which energy is lost to heat

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction.

<span class="mw-page-title-main">Scattering</span> Range of physical processes

Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering. As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays and X-rays was observed and discussed. With the discovery of subatomic particles and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

Particle-induced X-ray emission or proton-induced X-ray emission (PIXE) is a technique used for determining the elemental composition of a material or a sample. When a material is exposed to an ion beam, atomic interactions occur that give off EM radiation of wavelengths in the x-ray part of the electromagnetic spectrum specific to an element. PIXE is a powerful yet non-destructive elemental analysis technique now used routinely by geologists, archaeologists, art conservators and others to help answer questions of provenance, dating and authenticity.

<span class="mw-page-title-main">Nuclear reaction</span> Process in which two nuclei collide to produce one or more nuclides

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle and they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

<span class="mw-page-title-main">Neutron scattering</span> Physical phenomenon

Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and the nuclear sciences. Regarding the experimental technique, understanding and manipulating neutron scattering is fundamental to the applications used in crystallography, physics, physical chemistry, biophysics, and materials research.

Elastic scattering is a form of particle scattering in scattering theory, nuclear physics and particle physics. In this process, the kinetic energy of a particle is conserved in the center-of-mass frame, but its direction of propagation is modified meaning the two particles in the collision do not lose energy. Furthermore, while the particle's kinetic energy in the center-of-mass frame is constant, its energy in the lab frame is not. Generally, elastic scattering describes a process in which the total kinetic energy of the system is conserved. During elastic scattering of high-energy subatomic particles, linear energy transfer (LET) takes place until the incident particle's energy and speed has been reduced to the same as its surroundings, at which point the particle is "stopped".

Nuclear reaction analysis (NRA) is a nuclear method of nuclear spectroscopy in materials science to obtain concentration vs. depth distributions for certain target chemical elements in a solid thin film.

Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering, is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This technique is known by several different names. These names are listed below. In the technique of ERDA, an energetic ion beam is directed at a sample to be characterized and there is an elastic nuclear interaction between the ions of beam and the atoms of the target sample. Such interactions are commonly of Coulomb nature. Depending on the kinetics of the ions, cross section area, and the loss of energy of the ions in the matter, ERDA helps determine the quantification of the elemental analysis. It also provides information about the depth profile of the sample.

Ion beam analysis (IBA) is an important family of modern analytical techniques involving the use of MeV ion beams to probe the composition and obtain elemental depth profiles in the near-surface layer of solids. All IBA methods are highly sensitive and allow the detection of elements in the sub-monolayer range. The depth resolution is typically in the range of a few nanometers to a few ten nanometers. Atomic depth resolution can be achieved, but requires special equipment. The analyzed depth ranges from a few ten nanometers to a few ten micrometers. IBA methods are always quantitative with an accuracy of a few percent. Channeling allows to determine the depth profile of damage in single crystals.

<span class="mw-page-title-main">Electron scattering</span> Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

<span class="mw-page-title-main">Mainz Microtron</span>

The Mainz Microtron, abbreviated MAMI, is a microtron which provides a continuous wave, high intensity, polarized electron beam with an energy up to 1.6 GeV. MAMI is the core of an experimental facility for particle, nuclear and X-ray radiation physics at the Johannes Gutenberg University in Mainz (Germany). It is one of the largest campus-based accelerator facilities for basic research in Europe. The experiments at MAMI are performed by about 200 physicists of many countries organized in international collaborations.

<span class="mw-page-title-main">Channelling (physics)</span> Process constraining a charged particles path through a crystal

In condensed-matter physics, channelling (or channeling) is the process that constrains the path of a charged particle in a crystalline solid.

<span class="mw-page-title-main">Stopping power (particle radiation)</span> Retarding force acting on charged particles due to interactions with matter

In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. Its application is important in areas such as radiation protection, ion implantation and nuclear medicine.

The proximity effect in electron beam lithography (EBL) is the phenomenon that the exposure dose distribution, and hence the developed pattern, is wider than the scanned pattern due to the interactions of the primary beam electrons with the resist and substrate. These cause the resist outside the scanned pattern to receive a non-zero dose.

In physics, Mott scattering also referred to as spin-coupling inelastic Coulomb scattering, is the separation of the two spin states of an electron beam by scattering the beam off the Coulomb field of heavy atoms. It is named after Nevill Francis Mott, who first developed the theory. It is mostly used to measure the spin polarization of an electron beam.

Helium atom scattering (HAS) is a surface analysis technique used in materials science. HAS provides information about the surface structure and lattice dynamics of a material by measuring the diffracted atoms from a monochromatic helium beam incident on the sample.

<span class="mw-page-title-main">Low-energy ion scattering</span>

Low-energy ion scattering spectroscopy (LEIS), sometimes referred to simply as ion scattering spectroscopy (ISS), is a surface-sensitive analytical technique used to characterize the chemical and structural makeup of materials. LEIS involves directing a stream of charged particles known as ions at a surface and making observations of the positions, velocities, and energies of the ions that have interacted with the surface. Data that is thus collected can be used to deduce information about the material such as the relative positions of atoms in a surface lattice and the elemental identity of those atoms. LEIS is closely related to both medium-energy ion scattering (MEIS) and high-energy ion scattering, differing primarily in the energy range of the ion beam used to probe the surface. While much of the information collected using LEIS can be obtained using other surface science techniques, LEIS is unique in its sensitivity to both structure and composition of surfaces. Additionally, LEIS is one of a very few surface-sensitive techniques capable of directly observing hydrogen atoms, an aspect that may make it an increasingly more important technique as the hydrogen economy is being explored.

References

Citations

Bibliography