Plum pudding model

Last updated
A 1905 diagram by J. J. Thomson illustrating his proposed arrangements of electrons in an atom. Thomson atom electron arrangements.jpg
A 1905 diagram by J. J. Thomson illustrating his proposed arrangements of electrons in an atom.
An atom with seven electrons, arranged in a pentagonal dipyramid, as imagined by Thomson in 1905. Thomson atom seven electrons.svg
An atom with seven electrons, arranged in a pentagonal dipyramid, as imagined by Thomson in 1905.

The plum pudding model is one of several historical scientific models of the atom. First proposed by J. J. Thomson in 1904 [1] soon after the discovery of the electron, but before the discovery of the atomic nucleus, the model tried to account for two properties of atoms then known: that there are electrons and that atoms have no net electric charge. Logically there had to be a commensurate quantity of positive charge to balance out the negative charge of the electrons, but having no clue as to the source of this positive charge, Thomson tentatively proposed it was everywhere in the atom, the atom being in the shape of a sphere. [2]

Contents

Thomson's model is popularly referred to as the plum pudding model in that the electrons are like raisins embedded in a pudding. Neither Thomson nor his colleagues used this analogy. Whoever coined the nickname mistakenly likened the positive charge to a solid whereas Thomson likened it to a liquid since he thought the electrons moved around in it. [3]

Overview

It had been known for many years that atoms contain negatively charged subatomic particles. Thomson called them "corpuscles" (particles), but they were more commonly called "electrons", the name G. J. Stoney had coined for the "fundamental unit quantity of electricity" in 1891. [4] It had also been known for many years that atoms have no net electric charge. Thomson held that atoms must also contain some positive charge that cancels out the negative charge of their electrons. [5] [6] Thomson published his proposed model in the March 1904 edition of the Philosophical Magazine , the leading British science journal of the day. In Thomson's view:

... the atoms of the elements consist of a number of negatively electrified corpuscles enclosed in a sphere of uniform positive electrification, ... [7]

Thomson's model was the first to assign a specific inner structure to an atom, though his original description did not include mathematical formulas. [8] [9] He had followed the work of William Thomson (later Lord Kelvin) who had written a paper proposing a vortex atom in 1867, [10] J.J. Thomson abandoned his 1890 "nebular atom" hypothesis, based on the vortex theory of the atom, in which atoms were composed of immaterial vortices and suggested there were similarities between the arrangement of vortices and periodic regularity found among the chemical elements. [11] Thomson based his atomic model on known experimental evidence of the day, and in fact, followed Lord Kelvin's lead again as Kelvin had proposed a positive sphere atom a year earlier. [12] [13] Thomson's proposal, based on Kelvin's model of a positive volume charge, served to guide future experiments.

The main objective of Thomson's model after its initial publication was to account for the electrically neutral and chemically varied state of the atom. [7] Electron orbits were stable under classical mechanics. When an electron moves away from the center of the positively charged sphere it is subjected to a greater net positive inward force due to the presence of more positive charge inside its orbit (see Gauss's law ). Electrons were free to rotate in rings that were further stabilized by interactions among the electrons, and spectroscopic measurements were meant to account for energy differences associated with different electron rings. As for the properties of matter, Thomson believed they arose from electrical effects. He further emphasized the need of a theory to help picture the physical and chemical aspects of an atom using the theory of corpuscles and positive charge. [14] Thomson attempted unsuccessfully to reshape his model to account for some of the major spectral lines experimentally known for several elements. [15] After the scientific discovery of radioactivity, Thomson decided to address it in his model by stating:

... we must face the problem of the constitution of the atom, and see if we can imagine a model which has in it the potentiality of explaining the remarkable properties shown by radio-active substances ... [16]

Thomson's model changed over the course of its initial publication, finally becoming a model with much more mobility containing electrons revolving in the dense field of positive charge rather than a static structure. Despite this, the colloquial nickname "plum pudding" was soon attributed to Thomson's model as the distribution of electrons within its positively charged region of space reminded many scientists of raisins, then called "plums", in the common English dessert, plum pudding. [8]

In 1909, Hans Geiger and Ernest Marsden conducted experiments where alpha particles were fired through thin sheets of gold. Their professor, Ernest Rutherford, expected to find results consistent with Thomson's atomic model. However, when the results were published in 1911, they instead implied the presence of a very small nucleus of positive charge at the center of each gold atom. [17] This led to the development of the Rutherford model of the atom. [18] Immediately after Rutherford published his results, Antonius van den Broek made the intuitive proposal that the atomic number of an atom is the total number of units of charge present in its nucleus. Henry Moseley's 1913 experiments (see Moseley's law ) provided the necessary evidence to support Van den Broek's proposal. The effective nuclear charge was found to be consistent with the atomic number (Moseley found only one unit of charge difference). This work culminated in the solar-system-like Bohr model of the atom in the same year, in which a nucleus containing an atomic number of positive charges is surrounded by an equal number of electrons in orbital shells. As Thomson's model guided Rutherford's experiments, Bohr's model guided Moseley's research. The Bohr model was elaborated upon during the time of the "old quantum theory", and then subsumed by the full-fledged development of quantum mechanics. [19] [20]

As an important example of a scientific model, the plum pudding model has motivated and guided several related scientific problems.

Mathematical Thomson problem

A particularly useful mathematics problem related to the plum pudding model is the optimal distribution of equal point charges on a unit sphere, called the Thomson problem. The Thomson problem is a natural consequence of the plum pudding model in the absence of its uniform positive background charge. [21] [22]

Origin of the nickname

A plum pudding, and not Thomson's preferred analogy. Plum Pudding.jpg
A plum pudding, and not Thomson's preferred analogy.

The first known writer to compare Thomson's model to a plum pudding was an anonymous reporter who wrote an article for the pharmaceutical journal Merck's Report in 1906.

While the negative electricity is concentrated on the extremely small corpuscle, the positive electricity is distributed throughout a considerable volume. An atom would thus consist of minute specks, the negative corpuscles, swimming about in a sphere of positive electrification, like raisins in a parsimonious plum pudding, units of negative electricity being attracted toward the center, while at the same time repelling each other. [23]

The analogy was never used by Thomson nor his colleagues. It seems to have been used by popular science writers to make the concept easier to understand for the layman. [8]

Related Research Articles

<span class="mw-page-title-main">Atomic number</span> Number of protons found in the nucleus of an atom

The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (np) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons.

<span class="mw-page-title-main">Atom</span> Smallest unit of a chemical element

Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium, and any atom that contains 29 protons is copper. Atoms with the same number of protons but a different number of neutrons are called isotopes of the same element.

<span class="mw-page-title-main">Atomic orbital</span> Function describing an electron in an atom

In quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function describes the electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

<span class="mw-page-title-main">History of atomic theory</span> History of atomic physics

Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries. Initially, it referred to a hypothetical concept of there being some fundamental particle of matter, too small to be seen by the naked eye, that could not be divided. Then the definition was refined to being the basic particles of the chemical elements, when chemists observed that elements seemed to combine with each other in ratios of small whole numbers. Then physicists discovered that these particles had an internal structure of their own and therefore perhaps did not deserve to be called "atoms", but renaming atoms would have been impractical by that point.

<span class="mw-page-title-main">Bohr model</span> Atomic model introduced by Niels Bohr in 1913

In atomic physics, the Bohr model or Rutherford–Bohr model of the atom, presented by Niels Bohr and Ernest Rutherford in 1913, consists of a small, dense nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity, and with the electron energies quantized.

<span class="mw-page-title-main">Chemical bond</span> Association of atoms to form chemical compounds

A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects. Chemical bonds are described has having different strengths: there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force, and hydrogen bonding.

<span class="mw-page-title-main">Ernest Rutherford</span> New Zealand physicist (1871–1937)

Ernest Rutherford, 1st Baron Rutherford of Nelson, was a New Zealand physicist who was a pioneering researcher in both atomic and nuclear physics. Rutherford has been described as "the father of nuclear physics", and "the greatest experimentalist since Michael Faraday". In 1908, he was awarded the Nobel Prize in Chemistry "for his investigations into the disintegration of the elements, and the chemistry of radioactive substances." He was the first Oceanian Nobel laureate, and the first to perform the awarded work in Canada.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei).

<span class="mw-page-title-main">J. J. Thomson</span> British physicist (1856–1940)

Sir Joseph John Thomson was a British physicist and Nobel Laureate in Physics, credited with the discovery of the electron, the first subatomic particle to be found.

<span class="mw-page-title-main">Rydberg formula</span> Formula for spectral line wavelengths in alkali metals

In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was first empirically stated in 1888 by the Swedish physicist Johannes Rydberg, then theoretically by Niels Bohr in 1913, who used a primitive form of quantum mechanics. The formula directly generalizes the equations used to calculate the wavelengths of the hydrogen spectral series.

<span class="mw-page-title-main">Geiger–Marsden experiments</span> Experiments proving existence of atomic nuclei

The Geiger–Marsden experiments were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.

<span class="mw-page-title-main">Hantaro Nagaoka</span> Japanese physicist

Hantaro Nagaoka was a Japanese physicist and a pioneer of Japanese physics during the Meiji period.

The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of N electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law. The physicist J. J. Thomson posed the problem in 1904 after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms.

<span class="mw-page-title-main">Rutherford model</span> First atomic structure proposal to include a nucleus and electron orbits

The Rutherford model was devised by Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum pudding model of the atom was incorrect. Rutherford's new model for the atom, based on the experimental results, contained new features of a relatively high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume containing most of the atom's mass; this region would be known as the atomic nucleus. The Rutherford model was subsequently superseded by the Bohr model.

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena—blackbody radiation, the photoelectric effect, solar emission spectra—an era called the Old or Older quantum theories. Building on the technology developed in classical mechanics, the invention of wave mechanics by Erwin Schrödinger and expansion by many others triggers the "modern" era beginning around 1925. Paul Dirac's relativistic quantum theory work lead him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

<span class="mw-page-title-main">Atomic nucleus</span> Core of an atom; composed of nucleons (protons and neutrons)

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.

In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on farther and farther from the nucleus. The shells correspond to the principal quantum numbers (n = 1, 2, 3, 4 ...) or are labeled alphabetically with the letters used in X-ray notation (K, L, M, ...). A useful guide when understanding electron shells in atoms is to note that each row on the conventional periodic table of elements represents an electron shell.

<span class="mw-page-title-main">History of subatomic physics</span> Chronological listing of experiments and discoveries

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

<span class="mw-page-title-main">Discovery of the neutron</span> Scientific background leading to the discovery of subatomic particles

The discovery of the neutron and its properties was central to the extraordinary developments in atomic physics in the first half of the 20th century. Early in the century, Ernest Rutherford developed a crude model of the atom, based on the gold foil experiment of Hans Geiger and Ernest Marsden. In this model, atoms had their mass and positive electric charge concentrated in a very small nucleus. By 1920, isotopes of chemical elements had been discovered, the atomic masses had been determined to be (approximately) integer multiples of the mass of the hydrogen atom, and the atomic number had been identified as the charge on the nucleus. Throughout the 1920s, the nucleus was viewed as composed of combinations of protons and electrons, the two elementary particles known at the time, but that model presented several experimental and theoretical contradictions.

References

  1. "Plum Pudding Model". Universe Today . 27 August 2009. Retrieved 19 December 2015.
  2. J. J. Thomson (1907). The Corpuscular Theory of Matter, p. 103: "In default of exact knowledge of the nature of the way in which positive electricity occurs in the atom, we shall consider a case in which the positive electricity is distributed in the way most amenable to mathematical calculation, i.e., when it occurs as a sphere of uniform density, throughout which the corpuscles are distributed."
  3. J. J. Thomson, in a letter to Oliver Lodge dated 11 April 1904, quoted in Davis & Falconer (1997):
    "With regard to positive electrification I have been in the habit of using the crude analogy of a liquid with a certain amount of cohesion, enough to keep it from flying to bits under its own repulsion. I have however always tried to keep the physical conception of the positive electricity in the background because I have always had hopes (not yet realised) of being able to do without positive electrification as a separate entity and to replace it by some property of the corpuscles.
  4. O'Hara, J. G. (March 1975). "George Johnstone Stoney, F.R.S., and the Concept of the Electron". Notes and Records of the Royal Society of London . 29 (2): 265–276. doi:10.1098/rsnr.1975.0018. JSTOR   531468. S2CID   145353314.
  5. "Discovery of the electron and nucleus (article)". Khan Academy . Retrieved 9 February 2021.
  6. Alviar-Agnew, Marissa; Agnew, Henry (4 April 2016). "4.3: The Nuclear Atom". Introductory Chemistry. LibreTexts . Retrieved 9 February 2021.
  7. 1 2 Thomson, J. J. (March 1904). "On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure". Philosophical Magazine . Sixth series. 7 (39): 237–265. doi:10.1080/14786440409463107. Archived (PDF) from the original on 2022-10-09.
  8. 1 2 3 Giora Hon; Bernard R. Goldstein (6 September 2013). "J. J. Thomson's plum-pudding atomic model: The making of a scientific myth". Annalen der Physik. 525 (8–9): A129–A133. doi:10.1002/andp.201300732.
  9. Thomson, J. J. (December 1899). "On the masses of the ions in gases at low pressures". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . 48 (295): 547–567. doi:10.1080/14786449908621447.
  10. Thomson, William (1869). "On Vortex Atoms". Proceedings of the Royal Society of Edinburgh . 6: 94–105. doi:10.1017/S0370164600045430.
  11. Kragh, Helge (2002). Quantum Generations: A History of Physics in the Twentieth Century (Reprint ed.). Princeton University Press. pp. 43–45. ISBN   978-0691095523.
  12. Models of the Atom, Michael Fowler, University of Virginia https://galileo.phys.virginia.edu/classes/252/more_atoms.html#Plum%20Pudding
  13. Kumar, Manjit, Quantum Einstein, Bohr and the Great Debate, ISBN   978-0393339888, 2008.
  14. E. R. (1908). "The Corpuscular Theory of Matter". Nature . 77 (2005): 505–506. Bibcode:1908Natur..77..505R. doi:10.1038/077505a0. S2CID   36356538.
  15. Models of the Atom, Michael Fowler, University of Virginia https://galileo.phys.virginia.edu/classes/252/more_atoms.html#Plum%20Pudding
  16. Thomson, J. J. (1904). Electricity and Matter. Mrs. Hepsa Ely Silliman Memorial Lectures. New Haven: Yale University Press. ISBN   978-0-686-83533-2.
  17. Angelo, Joseph A. (2004). Nuclear Technology. Greenwood Publishing. p. 110. ISBN   978-1-57356-336-9.
  18. Heilbron, John L. (2013). "The path to the quantum atom". Nature . 498 (7452): 27–30. doi:10.1038/498027a. PMID   23739408. S2CID   4355108.
  19. Hentschel, Klaus (2009). "Zeeman Effect". In Greenberger, Daniel; Hentschel, Klaus; Weinert, Friedel (eds.). Compendium of Quantum Physics. Berlin, Heidelberg: Springer. pp. 862–864. doi:10.1007/978-3-540-70626-7_241. ISBN   978-3-540-70622-9.
  20. Eckert, Michael (April 2014). "How Sommerfeld extended Bohr's model of the atom (1913–1916)". The European Physical Journal H . 39 (2): 141–156. Bibcode:2014EPJH...39..141E. doi:10.1140/epjh/e2013-40052-4. S2CID   256006474.
  21. Levin, Y.; Arenzon, J. J. (2003). "Why charges go to the Surface: A generalized Thomson Problem". Europhys. Lett. 63 (3): 415–418. arXiv: cond-mat/0302524 . Bibcode:2003EL.....63..415L. doi:10.1209/epl/i2003-00546-1. S2CID   250764497.
  22. Roth, J. (2007-10-24). "Description of a highly symmetric polytope observed in Thomson's problem of charges on a hypersphere". Physical Review E. 76 (4): 047702. Bibcode:2007PhRvE..76d7702R. doi:10.1103/PhysRevE.76.047702. ISSN   1539-3755. PMID   17995142. Although Thomson's model has been outdated for a long time by quantum mechanics, his problem of placing charges on a sphere is still noteworthy.
  23. "What is Matter?". Merck's Report. 15: 359–360. December 1906.