Coulomb collision

Last updated

A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. This type of collision is common in plasmas where the typical kinetic energy of the particles is too large to produce a significant deviation from the initial trajectories of the colliding particles, and the cumulative effect of many collisions is considered instead. The importance of Coulomb collisions was first pointed out by Lev Landau in 1936, [1] who also derived the corresponding kinetic equation which is known as the Landau kinetic equation.

Contents

Simplified mathematical treatment for plasmas

In a plasma, a Coulomb collision rarely results in a large deflection. The cumulative effect of the many small angle collisions, however, is often larger than the effect of the few large angle collisions that occur, so it is instructive to consider the collision dynamics in the limit of small deflections.

We can consider an electron of charge and mass passing a stationary ion of charge and much larger mass at a distance with a speed . The perpendicular force is at the closest approach and the duration of the encounter is about . The product of these expressions divided by the mass is the change in perpendicular velocity:

Note that the deflection angle is proportional to . Fast particles are "slippery" and thus dominate many transport processes. The efficiency of velocity-matched interactions is also the reason that fusion products tend to heat the electrons rather than (as would be desirable) the ions. If an electric field is present, the faster electrons feel less drag and become even faster in a "run-away" process.

In passing through a field of ions with density , an electron will have many such encounters simultaneously, with various impact parameters (distance to the ion) and directions. The cumulative effect can be described as a diffusion of the perpendicular momentum. The corresponding diffusion constant is found by integrating the squares of the individual changes in momentum. The rate of collisions with impact parameter between and is , so the diffusion constant is given by

Obviously the integral diverges toward both small and large impact parameters. The divergence at small impact parameters is clearly unphysical since under the assumptions used here, the final perpendicular momentum cannot take on a value higher than the initial momentum. Setting the above estimate for equal to , we find the lower cut-off to the impact parameter to be about

We can also use as an estimate of the cross section for large-angle collisions. Under some conditions there is a more stringent lower limit due to quantum mechanics, namely the de Broglie wavelength of the electron, where is Planck's constant.

At large impact parameters, the charge of the ion is shielded by the tendency of electrons to cluster in the neighborhood of the ion and other ions to avoid it. The upper cut-off to the impact parameter should thus be approximately equal to the Debye length:

Coulomb logarithm

The integral of thus yields the logarithm of the ratio of the upper and lower cut-offs. This number is known as the Coulomb logarithm and is designated by either or . It is the factor by which small-angle collisions are more effective than large-angle collisions. The Coulomb logarithm was introduced independently by Lev Landau in 1936 [1] and Subrahmanyan Chandrasekhar in 1943. [2] For many plasmas of interest it takes on values between and . (For convenient formulas, see pages 34 and 35 of the NRL Plasma formulary .) The limits of the impact parameter integral are not sharp, but are uncertain by factors on the order of unity, leading to theoretical uncertainties on the order of . For this reason it is often justified to simply take the convenient choice . The analysis here yields the scalings and orders of magnitude. [3]

Mathematical treatment for plasmas accounting for all impact parameters

An N-body treatment accounting for all impact parameters can be performed by taking into account a few simple facts. The main two ones are: (i) The above change in perpendicular velocity is the lowest order approximation in 1/b of a full Rutherford deflection. Therefore, the above perturbative theory can also be done by using this full deflection. This makes the calculation correct up to the smallest impact parameters where this full deflection must be used. (ii) The effect of Debye shielding for large impact parameters can be accommodated by using a Debye-shielded Coulomb potential (Screening effect Debye length). This cancels the above divergence at large impact parameters. The above Coulomb logarithm turns out to be modified by a constant of order unity. [4]

History

In the 1950s, transport due to collisions in non-magnetized plasmas was simultaneously studied by two groups at University of California, Berkeley's Radiation Laboratory. They quoted each other’s results in their respective papers. [5] [6] The first reference deals with the mean-field part of the interaction by using perturbation theory in electric field amplitude. Within the same approximations, a more elegant derivation of the collisional transport coefficients was provided, by using the Balescu–Lenard equation (see Sec. 8.4 of [7] and Secs. 7.3 and 7.4 of [8] ). The second reference uses the Rutherford picture of two-body collisions. The calculation of the first reference is correct for impact parameters much larger than the interparticle distance, while those of the second one work in the opposite case. Both calculations are extended to the full range of impact parameters by introducing each a single ad hoc cutoff, and not two as in the above simplified mathematical treatment, but the transport coefficients depend only logarithmically thereon; both results agree and yield the above expression for the diffusion constant.

See also

Related Research Articles

<span class="mw-page-title-main">Rutherford scattering</span> Elastic scattering of charged particles by the Coulomb force

In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering was first referred to as Coulomb scattering because it relies only upon the static electric (Coulomb) potential, and the minimum distance between particles is set entirely by this potential. The classical Rutherford scattering process of alpha particles against gold nuclei is an example of "elastic scattering" because neither the alpha particles nor the gold nuclei are internally excited. The Rutherford formula further neglects the recoil kinetic energy of the massive target nucleus.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

A Langmuir probe is a device used to determine the electron temperature, electron density, and electric potential of a plasma. It works by inserting one or more electrodes into a plasma, with a constant or time-varying electric potential between the various electrodes or between them and the surrounding vessel. The measured currents and potentials in this system allow the determination of the physical properties of the plasma.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

In physics, the screened Poisson equation is a Poisson equation, which arises in the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow.

<span class="mw-page-title-main">Klein–Nishina formula</span> Electron-photon scattering cross section

In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

<span class="mw-page-title-main">Lamb shift</span> Difference in energy of hydrogenic atom electron states not predicted by the Dirac equation

In physics the Lamb shift, named after Willis Lamb, refers to an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb shift refers to a deviation from theory seen in the differing energies contained by the 2S1/2 and 2P1/2 orbitals of the hydrogen atom.

In plasmas and electrolytes, the Debye length, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are increasingly electrically screened and the electric potential decreases in magnitude by 1/e. A Debye sphere is a volume whose radius is the Debye length. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

The DLVO theory explains the aggregation and kinetic stability of aqueous dispersions quantitatively and describes the force between charged surfaces interacting through a liquid medium. It combines the effects of the van der Waals attraction and the electrostatic repulsion due to the so-called double layer of counterions. The electrostatic part of the DLVO interaction is computed in the mean field approximation in the limit of low surface potentials - that is when the potential energy of an elementary charge on the surface is much smaller than the thermal energy scale, . For two spheres of radius each having a charge separated by a center-to-center distance in a fluid of dielectric constant containing a concentration of monovalent ions, the electrostatic potential takes the form of a screened-Coulomb or Yukawa potential,

In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. The equation is a result of combining ideas of quantum mechanics and statistical mechanics and is used to explain the spectral classification of stars. The expression was developed by physicist Meghnad Saha in 1920.

The Debye sheath is a layer in a plasma which has a greater density of positive ions, and hence an overall excess positive charge, that balances an opposite negative charge on the surface of a material with which it is in contact. The thickness of such a layer is several Debye lengths thick, a value whose size depends on various characteristics of plasma.

The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.

<span class="mw-page-title-main">Plasma parameters</span>

Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged particles that responds collectively to electromagnetic forces. Plasma typically takes the form of neutral gas-like clouds or charged ion beams, but may also include dust and grains. The behaviour of such particle systems can be studied statistically.

The plasma parameter is a dimensionless number, denoted by capital Lambda, Λ. The plasma parameter is usually interpreted to be the argument of the Coulomb logarithm, which is the ratio of the maximum impact parameter to the classical distance of closest approach in Coulomb scattering. In this case, the plasma parameter is given by:

Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.

The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution. The Debye–Hückel equation provides a starting point for modern treatments of non-ideality of electrolyte solutions.

The Spitzer resistivity is an expression describing the electrical resistance in a plasma, which was first formulated by Lyman Spitzer in 1950. The Spitzer resistivity of a plasma decreases in proportion to the electron temperature as .

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellerators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

The Dreicer field is the critical electric field above which electrons in a collisional plasma can be accelerated to become runaway electrons. It was named after Harry Dreicer who derived the expression in 1959 and expanded on the concept in 1960. The Dreicer field is an important parameter in the study of tokamaks to suppress runaway generation in nuclear fusion.

References

  1. 1 2 Landau, L.D. (1936). "Kinetic equation for the case of coulomb interaction". Phys. Z. Sowjetunion. 10: 154–164.
  2. Chandrasekhar, S. (1943). Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophysical Journal, 97, 255-262.
  3. Huba, J.D. (2016). NRL Plasma formulary (PDF). The Office of Naval Research. pp. 31 ff.
  4. Escande DF, Elskens Y, Doveil F (2015) Uniform derivation of Coulomb collisional transport thanks to Debye shielding. Journal of Plasma Physics 81, 305810101
  5. Gasiorowicz, S., Neuman, M. and Riddell, R. J. Jr. 1956 Dynamics of ionized media. Phys. Rev. 101, 922–934
  6. Rosenbluth, M. N., MacDonald, W. M. and Judd, D. L. 1957 Fokker-Planck equation for an inverse-square force. Phys. Rev. 107, 1–6.
  7. Balescu, R. 1997 Statistical Dynamics: Matter Out of Equilibrium. London: Imperial College Press.
  8. Hazeltine, R. D. and Waelbroeck, F. L. 2004 The Framework of Plasma Physics. Boulder: Westview Press