In condensed-matter physics, channelling (or channeling) is the process that constrains the path of a charged particle in a crystalline solid. [1] [2] [3]
Many physical phenomena can occur when a charged particle is incident upon a solid target, e.g., elastic scattering, inelastic energy-loss processes, secondary-electron emission, electromagnetic radiation, nuclear reactions, etc. All of these processes have cross sections which depend on the impact parameters involved in collisions with individual target atoms. When the target material is homogeneous and isotropic, the impact-parameter distribution is independent of the orientation of the momentum of the particle and interaction processes are also orientation-independent. When the target material is monocrystalline, the yields of physical processes are very strongly dependent on the orientation of the momentum of the particle relative to the crystalline axes or planes. Or in other words, the stopping power of the particle is much lower in certain directions than others. This effect is commonly called the "channelling" effect. It is related to other orientation-dependent effects, such as particle diffraction. These relationships will be discussed in detail later.
The channelling effect was first discovered in pioneering binary collision approximation computer simulations in 1963 [1] [3] in order to explain exponential tails in experimentally observed ion range distributions that did not conform to standard theories of ion penetration. The simulated prediction was confirmed experimentally the following year by measurements of ion penetration depths in single-crystalline tungsten. [4] First transmission experiments of ions channelling through crystals were performed by Oak Ridge National Laboratory group showing that ions distribution is determinated by crystal rainbow channelling effect. [5]
From a simple, classical standpoint, one may qualitatively understand the channelling effect as follows: If the direction of a charged particle incident upon the surface of a monocrystal lies close to a major crystal direction (Fig. 1), the particle with high probability will only do small-angle scattering as it passes through the several layers of atoms in the crystal and hence remain in the same crystal 'channel'. If it is not in a major crystal direction or plane ("random direction", Fig. 2), it is much more likely to undergo large-angle scattering and hence its final mean penetration depth is likely to be shorter. If the direction of the particle's momentum is close to the crystalline plane, but it is not close to major crystalline axes, this phenomenon is called "planar channelling". Channelling usually leads to deeper penetration of the ions in the material, an effect that has been observed experimentally and in computer simulations, see Figures 3-5. [6]
Negatively charged particles like antiprotons and electrons are attracted towards the positively charged nuclei of the plane, and after passing the center of the plane, they will be attracted again, so negatively charged particles tend to follow the direction of one crystalline plane.
Because the crystalline plane has a high density of atomic electrons and nuclei, the channeled particles eventually suffer a high angle Rutherford scattering or energy-losses in collision with electrons and leave the channel. This is called the "dechannelling" process.
Positively charged particles like protons and positrons are instead repelled from the nuclei of the plane, and after entering the space between two neighboring planes, they will be repelled from the second plane. So positively charged particles tend to follow the direction between two neighboring crystalline planes, but at the largest possible distance from each of them. Therefore, the positively charged particles have a smaller probability of interacting with the nuclei and electrons of the planes (smaller "dechannelling" effect) and travel longer distances.
The same phenomena occur when the direction of momentum of the charged particles lies close to a major crystalline, high-symmetry axis. This phenomenon is called "axial channelling". Generally, the effect of axial channeling is higher than planar channeling due to a deeper potential formed in axial conditions.
At low energies the channelling effects in crystals are not present because small-angle scattering at low energies requires large impact parameters, which become bigger than interplanar distances. The particle's diffraction is dominating here. At high energies the quantum effects and diffraction are less effective and the channelling effect is present.
There are several particularly interesting applications of the channelling effects.
Channelling effects can be used as tools to investigate the properties of the crystal lattice and of its perturbations (like doping) in the bulk region that is not accessible to X-rays. The channelling method may be utilized to detect the geometrical location of interstitials. This is an important variation of the Rutherford backscattering ion beam analysis technique, commonly called Rutherford backscattering/channelling (RBS-C).
The channelling may even be used for superfocusing of ion beam, to be employed for sub-atomic microscopy. [12]
At higher energies (tens of GeV), the applications include the channelling radiation for enhanced production of high energy gamma rays, [13] [14] and the use of bent crystals for extraction of particles from the halo of the circulating beam in a particle accelerator. [15] [16]
The classical treatment of channelling phenomenon supposes that the ion - nucleus interactions are not correlated phenomena. The first analytic classical treatise is due to Jens Lindhard in 1965, [17] who proposed a treatment that still remains the reference one. He proposed a model that is based on the effects of a continuous repulsive potential generated by atomic nuclei lines or planes, arranged neatly in a crystal. The continuous potential is the average in a row or on an atomic plane of the single Coulomb potentials of the charged nuclei and shielded from the electronic cloud.
The proposed potential (named Lindhard potential) is:
r represents the distance from the nucleus, is a constant equal to 3 and a is the screen radius of Thomas-Fermi:
is equal to the Bohr radius (=0.53Å the radius of the smallest orbit of the Bohr atom). The typical values for the screen radius is in between 0.1-0.2 Å.
Considering the case of axial channelling, if d is the distance between two successive atoms of an atomic row, the mean of the potential along this row is equal to:
equal to the distance between atomic lines. The obtained potential is a continuous potential generated by a string of atoms with an atomic number and a mean distance d between nuclei.
The energy of the channeled ions, having an atomic number can be written as:
where e are respectively the parallel and perpendicular components of the momentum of the projectile with respect to the considered direction of the string of atoms. The potential is the minimum potential of the channel, taking into account the superposition of the potentials generated by the various atomic lines inside the crystal.
It therefore follows that the components of the momentum are:
where is the angle between the direction of motion of an ion and the considered crystallographic axial direction.
Neglecting the energy loss processes, the quantity is conserved during the channeled ion motion and the energy conservation can be formulated as follows:
The equation is also known as the expression of the conservation of transverse energy. The approximation of is feasible, since we consider a good alignment between ion and crystallographic axis.
The channelling condition can now be considered the condition for which an ion is channeled if its transverse energy is not sufficient to overcome the height of the potential barrier created by the strings of ordered nuclei. It is therefore useful to define the "critical energy" as that transverse energy under which an ion is channeled, while if it exceeds it, an ion will be de-channeled.
Typical values are a few tens of eV, since the critical distance is similar to the screen radius, i.e. 0.1-0.2 Å. Therefore, all ions with transverse energy lower than will be channeled.
In the case of (perfect ion-axis alignment) all ions with impact parameter will be de-channeled.
where is the occupied area by each row of atoms having an average distance d in a material, with a density N (expressed as atoms / cm ^ 3). Therefore, is an estimation of the smallest fraction of de-channeled ions that can be obtained from a material perfectly aligned to the ion beam. By considering a single crystal of silicon, oriented along the <110>, a can be calculated, in good agreement with the experimental values.
Further considerations can be made by considering the thermal vibration motion of the nuclei: for this discussion, see the reference. [18]
The critical angle can be defined as the angle such that if the ion enters with an angle smaller than the critical angle it will be channeled vice versa its transverse energy will allow it to escape to the periodic potential.
Using the Lindhard potential and assuming the amplitude of thermal vibration as the minimum approach distance.
Typical critical angles values (at room temperature) are for silicon <110> 0.71 °, for germanium <100> 0.89 °, for tungsten <100> 2.17 °.
Similar consideration can be made for planar channelling. In this case, the average of the atomic potentials will cause the ions to be confined between charge planes that correspond to a continuous planar potential .
where are the average number of atoms per unit area in the plane, is the spacing between crystallographic planes and y is the distance from the plane. Planar channelling has critical angles that are a factor of 2-4 smaller than axial analogs and a which is greater than axial channelling, with values that are around 10-20%, comparing with > 99% of axial channelling. A complete discussion of planar channelling can be found in references. [18] [19]
A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. STM senses the surface by using an extremely sharp conducting tip that can distinguish features smaller than 0.1 nm with a 0.01 nm (10 pm) depth resolution. This means that individual atoms can routinely be imaged and manipulated. Most scanning tunneling microscopes are built for use in ultra-high vacuum at temperatures approaching absolute zero, but variants exist for studies in air, water and other environments, and for temperatures over 1000 °C.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.
In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:
A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them.
In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.
In condensed matter physics, scintillation is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons or energetic particles. See scintillator and scintillation counter for practical applications.
The DLVO theory explains the aggregation and kinetic stability of aqueous dispersions quantitatively and describes the force between charged surfaces interacting through a liquid medium. It combines the effects of the van der Waals attraction and the electrostatic repulsion due to the so-called double layer of counterions. The electrostatic part of the DLVO interaction is computed in the mean field approximation in the limit of low surface potentials - that is when the potential energy of an elementary charge on the surface is much smaller than the thermal energy scale, . For two spheres of radius each having a charge separated by a center-to-center distance in a fluid of dielectric constant containing a concentration of monovalent ions, the electrostatic potential takes the form of a screened-Coulomb or Yukawa potential,
In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
The Poisson–Boltzmann equation is a useful equation in many settings, whether it be to understand physiological interfaces, polymer science, electron interactions in a semiconductor, or more. It aims to describe the distribution of the electric potential in solution in the direction normal to a charged surface. This distribution is important to determine how the electrostatic interactions will affect the molecules in solution. The Poisson–Boltzmann equation is derived via mean-field assumptions. From the Poisson–Boltzmann equation many other equations have been derived with a number of different assumptions.
The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.
In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.
Friedel oscillations, named after French physicist Jacques Friedel, arise from localized perturbations in a metallic or semiconductor system caused by a defect in the Fermi gas or Fermi liquid. Friedel oscillations are a quantum mechanical analog to electric charge screening of charged species in a pool of ions. Whereas electrical charge screening utilizes a point entity treatment to describe the make-up of the ion pool, Friedel oscillations describing fermions in a Fermi fluid or Fermi gas require a quasi-particle or a scattering treatment. Such oscillations depict a characteristic exponential decay in the fermionic density near the perturbation followed by an ongoing sinusoidal decay resembling sinc function. In 2020, magnetic Friedel oscillations were observed on a metal surface.
The Holstein–Herring method, also called the surface Integral method, or Smirnov's method is an effective means of getting the exchange energy splittings of asymptotically degenerate energy states in molecular systems. Although the exchange energy becomes elusive at large internuclear systems, it is of prominent importance in theories of molecular binding and magnetism. This splitting results from the symmetry under exchange of identical nuclei. The basic idea pioneered by Theodore Holstein, Conyers Herring and Boris M. Smirnov in the 1950-1960.
Double layer forces occur between charged objects across liquids, typically water. This force acts over distances that are comparable to the Debye length, which is on the order of one to a few tenths of nanometers. The strength of these forces increases with the magnitude of the surface charge density. For two similarly charged objects, this force is repulsive and decays exponentially at larger distances, see figure. For unequally charged objects and eventually at shorted distances, these forces may also be attractive. The theory due to Derjaguin, Landau, Verwey, and Overbeek (DLVO) combines such double layer forces together with Van der Waals forces in order to estimate the actual interaction potential between colloidal particles.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.