Secondary electrons

Last updated
Visualisation of a Townsend avalanche, which is sustained by the generation of secondary electrons in an electric field Electron avalanche.gif
Visualisation of a Townsend avalanche, which is sustained by the generation of secondary electrons in an electric field

Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the primary radiation). This radiation can be in the form of ions, electrons, or photons with sufficiently high energy, i.e. exceeding the ionization potential. Photoelectrons can be considered an example of secondary electrons where the primary radiation are photons; in some discussions photoelectrons with higher energy (>50  eV) are still considered "primary" while the electrons freed by the photoelectrons are "secondary".

Contents

Mean free path of low-energy electrons. Secondary electrons are generally considered to have energies below 50 eV. The rate of energy loss for electron scattering is very low, so most electrons released have energies peaking below 5 eV(Seiler, 1983). Electron MFP and Range.PNG
Mean free path of low-energy electrons. Secondary electrons are generally considered to have energies below 50 eV. The rate of energy loss for electron scattering is very low, so most electrons released have energies peaking below 5 eV(Seiler, 1983).

Applications

Secondary electrons are also the main means of viewing images in the scanning electron microscope (SEM). The range of secondary electrons depends on the energy. Plotting the inelastic mean free path as a function of energy often shows characteristics of the "universal curve" [1] familiar to electron spectroscopists and surface analysts. This distance is on the order of a few nanometers in metals and tens of nanometers in insulators. [2] [3] This small distance allows such fine resolution to be achieved in the SEM.

For SiO2, for a primary electron energy of 100  eV, the secondary electron range is up to 20 nm from the point of incidence. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Photoelectric effect</span> Emission of electrons when light hits a material

The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid state and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

<span class="mw-page-title-main">Auger electron spectroscopy</span> Analytical technique used specifically in the study of surfaces

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials science. It is a form of electron spectroscopy that relies on the Auger effect, based on the analysis of energetic electrons emitted from an excited atom after a series of internal relaxation events. The Auger effect was discovered independently by both Lise Meitner and Pierre Auger in the 1920s. Though the discovery was made by Meitner and initially reported in the journal Zeitschrift für Physik in 1922, Auger is credited with the discovery in most of the scientific community. Until the early 1950s Auger transitions were considered nuisance effects by spectroscopists, not containing much relevant material information, but studied so as to explain anomalies in X-ray spectroscopy data. Since 1953 however, AES has become a practical and straightforward characterization technique for probing chemical and compositional surface environments and has found applications in metallurgy, gas-phase chemistry, and throughout the microelectronics industry.

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

<span class="mw-page-title-main">Photoemission spectroscopy</span> Examining a substance by measuring electrons emitted in the photoelectric effect

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy, refers to energy measurement of electrons emitted from solids, gases or liquids by the photoelectric effect, in order to determine the binding energies of electrons in the substance. The term refers to various techniques, depending on whether the ionization energy is provided by X-ray, XUV or UV photons. Regardless of the incident photon beam, however, all photoelectron spectroscopy revolves around the general theme of surface analysis by measuring the ejected electrons.

Photoemission electron microscopy is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast. The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

Deep-level transient spectroscopy (DLTS) is an experimental tool for studying electrically active defects in semiconductors. DLTS establishes fundamental defect parameters and measures their concentration in the material. Some of the parameters are considered as defect "finger prints" used for their identifications and analysis.

<span class="mw-page-title-main">Focused ion beam</span> Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

<span class="mw-page-title-main">Extreme ultraviolet</span> Ultraviolet light with a wavelength of 10–121nm

Extreme ultraviolet radiation or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths shorter that the hydrogen Lyman-alpha line from 121 nm down to the X-ray band of 10 nm, and therefore having photons with energies from 10.26 eV up to 124.24 eV. EUV is naturally generated by the solar corona and artificially by plasma, high harmonic generation sources and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms.

Rydberg ionization spectroscopy is a spectroscopy technique in which multiple photons are absorbed by an atom causing the removal of an electron to form an ion.

<span class="mw-page-title-main">Electron beam-induced current</span> Semiconductor analysis technique

Electron-beam-induced current (EBIC) is a semiconductor analysis technique performed in a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM). It is most commonly used to identify buried junctions or defects in semiconductors, or to examine minority carrier properties. EBIC is similar to cathodoluminescence in that it depends on the creation of electron–hole pairs in the semiconductor sample by the microscope's electron beam. This technique is used in semiconductor failure analysis and solid-state physics.

Ultraviolet photoelectron spectroscopy (UPS) refers to the measurement of kinetic energy spectra of photoelectrons emitted by molecules which have absorbed ultraviolet photons, in order to determine molecular orbital energies in the valence region.

In solid-state physics, the Poole–Frenkel effect is a model describing the mechanism of trap-assisted electron transport in an electrical insulator. It is named after Yakov Frenkel, who published on it in 1938, extending the theory previously developed by H. H. Poole.

Jonathan Harris Orloff is an American physicist, author and professor. Born in New York City, he is the eldest son of Monford Orloff and brother of pianist Carole Orloff and historian Chester Orloff. Orloff is known for his major fields of research in charged particle optics, applications of field emission processes, high-brightness electron and ion sources, focused ion and electron beams and their applications for micromachining, surface analysis and microscopy and instrumentation development for semiconductor device manufacturing.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

<span class="mw-page-title-main">X-ray lithography</span> Lithographic technique that uses X-rays instead of light

X-ray lithography is a process used in semiconductor device fabrication industry to selectively remove parts of a thin film of photoresist. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or simply "resist," on the substrate to reach extremely small topological size of a feature. A series of chemical treatments then engraves the produced pattern into the material underneath the photoresist.

Photoelectron photoion coincidence spectroscopy (PEPICO) is a combination of photoionization mass spectrometry and photoelectron spectroscopy. It is largely based on the photoelectric effect. Free molecules from a gas-phase sample are ionized by incident vacuum ultraviolet (VUV) radiation. In the ensuing photoionization, a cation and a photoelectron are formed for each sample molecule. The mass of the photoion is determined by time-of-flight mass spectrometry, whereas, in current setups, photoelectrons are typically detected by velocity map imaging. Electron times-of-flight are three orders of magnitude smaller than those of ions, which allows electron detection to be used as a time stamp for the ionization event, starting the clock for the ion time-of-flight analysis. In contrast with pulsed experiments, such as REMPI, in which the light pulse must act as the time stamp, this allows to use continuous light sources, e.g. a discharge lamp or a synchrotron light source. No more than several ion–electron pairs are present simultaneously in the instrument, and the electron–ion pairs belonging to a single photoionization event can be identified and detected in delayed coincidence.

The operation of a photon scanning tunneling microscope (PSTM) is analogous to the operation of an electron scanning tunneling microscope, with the primary distinction being that PSTM involves tunneling of photons instead of electrons from the sample surface to the probe tip. A beam of light is focused on a prism at an angle greater than the critical angle of the refractive medium in order to induce total internal reflection within the prism. Although the beam of light is not propagated through the surface of the refractive prism under total internal reflection, an evanescent field of light is still present at the surface.

Ultrafast scanning electron microscopy (UFSEM) combines two microscopic modalities, Pump-probe microscopy and Scanning electron microscope, to gather temporal and spatial resolution phenomena. The technique uses ultrashort laser pulses for pump excitation of the material and the sample response will be detected by an Everhart-Thornley detector. Acquiring data depends mainly on formation of images by raster scan mode after pumping with short laser pulse at different delay times. The characterization of the output image will be done through the temporal resolution aspect. Thus, the idea is to exploit the shorter DeBroglie wavelength in respect to the photons which has great impact to increase the resolution about 1 nm. That technique is an up-to-date approach to study the dynamic of charge on material surfaces.

<span class="mw-page-title-main">Coherent microwave scattering</span> Technique used for the characterization of small plasma objects.

Coherent microwave scattering is a diagnostic technique used in the characterization of classical microplasmas. In this technique, the plasma to be studied is irradiated with a long-wavelength microwave field relative to the characteristic spatial dimensions of the plasma. For plasmas with sufficiently low skin-depths, the target is periodically polarized in a uniform fashion, and the scattered field can be measured and analyzed. In this case, the emitted radiation resembles that of a short-dipole predominantly determined by electron contributions rather than ions. The scattering is correspondingly referred to as constructive elastic. Various properties can be derived from the measured radiation such as total electron numbers, electron number densities, local magnetic fields through magnetically-induced depolarization, and electron collision frequencies for momentum transfer through the scattered phase. Notable advantages of the technique include a high sensitivity, ease of calibration using a dielectric scattering sample, good temporal resolution, low shot noise, non-intrusive probing, species-selectivity when coupled with resonance-enhanced multiphoton ionization (REMPI), single-shot acquisition, and the capability of time-gating due to continuous scanning.

References

  1. Zangwill, Andrew (1988). Physics at surfaces . Cambridge Cambridgeshire New York: Cambridge University Press. p.  21. ISBN   978-0-521-34752-5. OCLC   15855885.
  2. Seiler, H (1983). "Secondary electron emission in the scanning electron microscope". Journal of Applied Physics. AIP Publishing. 54 (11): R1–R18. Bibcode:1983JAP....54R...1S. doi:10.1063/1.332840. ISSN   0021-8979.
  3. Cazaux, Jacques (15 January 1999). "Some considerations on the secondary electron emission, δ, from e− irradiated insulators". Journal of Applied Physics. AIP Publishing. 85 (2): 1137–1147. doi:10.1063/1.369239. ISSN   0021-8979.
  4. Schreiber, E.; Fitting, H.-J. (2002). "Monte Carlo simulation of secondary electron emission from the insulator SiO2". Journal of Electron Spectroscopy and Related Phenomena. Elsevier BV. 124 (1): 25–37. doi:10.1016/s0368-2048(01)00368-1. ISSN   0368-2048.
  5. Fitting, H.-J.; Boyde, J.; Reinhardt, J. (16 January 1984). "Monte-Carlo Approach of Electron Emission from SiO2". Physica Status Solidi A. Wiley. 81 (1): 323–332. Bibcode:1984PSSAR..81..323F. doi:10.1002/pssa.2210810136. ISSN   0031-8965.