Photon-Induced Near-field Electron Microscopy

Last updated

Photon-Induced Near-field Electron Microscopy (PINEM) is a variant of the Ultrafast Transmission Electron Microscopy technique and is based on the inelastic coupling between electrons and photons in presence of a surface or a nanostructure. [1] This method allows one to investigate time-varying nanoscale electromagnetic fields in an electron microscope. [2] [3]

For visible light, such inelastic coupling between electrons and light, i.e. direct absorption or emission of photons, is forbidden in free space (vacuum) since it is not possible to simultaneously conserve both energy and momentum. This constraint can be circumvented when photon momentum is broadened as a result of light being reflected or scattered from a surface or nanostructure. This process would then generate evanescently confined near-fields with a broad momentum distribution, reaching high intensities in a nanoconfined space and thus also boosting the cross section of electron-light coupling.

Theoretically, the analytical description of the phenomenon has been provided by Park et al., [4] Garcia de Abajo et al. [5] and Feist et al. [6] In these works the authors demonstrated that the strength of electron-light interaction depends on the linear coupling to the electric field projection along the electron propagation direction. In particular, Feist et al. [6] also experimentally demonstrated that the interaction process results in a coherent spectral redistribution of the electron wave packet producing Rabi oscillations of a multi-level quantum ladder in which the states are separated by the photon energy.

Particularly appealing for photonics application is the fact that the spectral, spatial and momentum distributions of the electrons subjected to such inelastic scattering process are strictly correlated with the near-field distribution mediating the electron-light coupling. The latter can be thus mapped in space and time with ultrafast electron microscopy methods, providing femtosecond movies of nanoscale fields in and around nanostructures. [7] [8] [9]

More interestingly, the PINEM method can also be used to dynamically manipulate the wave properties of the electron beam by using suitably prepared electromagnetic field configuration. In such a way, one can modulate coherently the amplitude and phase of the electron beam along both the longitudinal and the transverse directions. [6] [10] [11] [12] [13] [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

An attosecond is a unit of time in the International System of Units (SI) equal to 10−18 or 11 000 000 000 000 000 000 of a second. An attosecond is to a second as a second is to about 31.71 billion years. The attosecond is a newly discovered "slice of time" that is tiny but has various potential applications: it can observe oscillating molecules, the chemical bonds formed by atoms in chemical reactions, and other extremely tiny and extremely fast things.

<span class="mw-page-title-main">Attosecond physics</span> Study of physics on quintillionth-second timescales

Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond photon pulses are used to unravel dynamical processes in matter with unprecedented time resolution.

Winfried Denk is a German physicist. He built the first two-photon microscope while he was a graduate student in Watt W. Webb's lab at Cornell University, in 1989.

A spaser or plasmonic laser is a type of laser which aims to confine light at a subwavelength scale far below Rayleigh's diffraction limit of light, by storing some of the light energy in electron oscillations called surface plasmon polaritons. The phenomenon was first described by David J. Bergman and Mark Stockman in 2003. The word spaser is an acronym for "surface plasmon amplification by stimulated emission of radiation". The first such devices were announced in 2009 by three groups: a 44-nanometer-diameter nanoparticle with a gold core surrounded by a dyed silica gain medium created by researchers from Purdue, Norfolk State and Cornell universities, a nanowire on a silver screen by a Berkeley group, and a semiconductor layer of 90 nm surrounded by silver pumped electrically by groups at the Eindhoven University of Technology and at Arizona State University. While the Purdue-Norfolk State-Cornell team demonstrated the confined plasmonic mode, the Berkeley team and the Eindhoven-Arizona State team demonstrated lasing in the so-called plasmonic gap mode. In 2018, a team from Northwestern University demonstrated a tunable nanolaser that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism.

<span class="mw-page-title-main">Ptychography</span>

Ptychography is a computational method of microscopic imaging. It generates images by processing many coherent interference patterns that have been scattered from an object of interest. Its defining characteristic is translational invariance, which means that the interference patterns are generated by one constant function moving laterally by a known amount with respect to another constant function. The interference patterns occur some distance away from these two components, so that the scattered waves spread out and "fold" into one another as shown in the figure.

Paul Bruce Corkum is a Canadian physicist specializing in attosecond physics and laser science. He holds a joint University of Ottawa–NRC chair in attosecond photonics. He also holds academic positions at Texas A&M University and the University of New Mexico. Corkum is both a theorist and an experimentalist.

<span class="mw-page-title-main">Resonant inelastic X-ray scattering</span> Advanced X-ray spectroscopy technique

Resonant inelastic X-ray scattering (RIXS) is an advanced X-ray spectroscopy technique.

An optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the electronic transistor that forms the basis of modern electronic devices. Optical transistors provide a means to control light using only light and has applications in optical computing and fiber-optic communication networks. Such technology has the potential to exceed the speed of electronics, while conserving more power. The fastest demonstrated all-optical switching signal is 900 attoseconds, which paves the way to develop ultrafast optical transistors.

A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.

Ultrafast X-rays or ultrashort X-ray pulses are femtosecond x-ray pulses with wavelengths occurring at interatomic distances. This beam uses the X-ray's inherent abilities to interact at the level of atomic nuclei and core electrons. This ability combined with the shorter pulses at 30 femtosecond could capture the change in position of atoms, or molecules during phase transitions, chemical reactions, and other transient processes in physics, chemistry, and biology.

In physics, the exciton–polariton is a type of polariton; a hybrid light and matter quasiparticle arising from the strong coupling of the electromagnetic dipolar oscillations of excitons and photons. Because light excitations are observed classically as photons, which are massless particles, they do not therefore have mass, like a physical particle. This property makes them a quasiparticle.

<span class="mw-page-title-main">Localized surface plasmon</span>

A localized surface plasmon (LSP) is the result of the confinement of a surface plasmon in a nanoparticle of size comparable to or smaller than the wavelength of light used to excite the plasmon. When a small spherical metallic nanoparticle is irradiated by light, the oscillating electric field causes the conduction electrons to oscillate coherently. When the electron cloud is displaced relative to its original position, a restoring force arises from Coulombic attraction between electrons and nuclei. This force causes the electron cloud to oscillate. The oscillation frequency is determined by the density of electrons, the effective electron mass, and the size and shape of the charge distribution. The LSP has two important effects: electric fields near the particle's surface are greatly enhanced and the particle's optical absorption has a maximum at the plasmon resonant frequency. Surface plasmon resonance can also be tuned based on the shape of the nanoparticle. The plasmon frequency can be related to the metal dielectric constant. The enhancement falls off quickly with distance from the surface and, for noble metal nanoparticles, the resonance occurs at visible wavelengths. Localized surface plasmon resonance creates brilliant colors in metal colloidal solutions.

Hrvoje Petek is a Croatian-born American physicist and the Richard King Mellon Professor of Physics and Astronomy, at the University of Pittsburgh, where he is also a professor of chemistry.

Ultrafast scanning electron microscopy (UFSEM) combines two microscopic modalities, Pump-probe microscopy and Scanning electron microscope, to gather temporal and spatial resolution phenomena. The technique uses ultrashort laser pulses for pump excitation of the material and the sample response will be detected by an Everhart-Thornley detector. Acquiring data depends mainly on formation of images by raster scan mode after pumping with short laser pulse at different delay times. The characterization of the output image will be done through the temporal resolution aspect. Thus, the idea is to exploit the shorter DeBroglie wavelength in respect to the photons which has great impact to increase the resolution about 1 nm. That technique is an up-to-date approach to study the dynamic of charge on material surfaces.

<span class="mw-page-title-main">Fabrizio Carbone</span> Italian and Swiss physicist

Fabrizio Carbone is an Italian and Swiss physicist and currently an Associate Professor at École Polytechnique Fédérale de Lausanne (EPFL). His research focuses on the study of matter in out of equilibrium conditions using ultrafast spectroscopy, diffraction and imaging techniques. In 2015, he attracted international attention by publishing a photography of light displaying both its quantum and classical nature.

Olga Smirnova is a German physicist who is Head of the Strong Field Theory Group at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy and Professor at the Technical University of Berlin. Her research considers the interaction of strong fields with atoms and molecules.

Attosecond chronoscopy are measurement techniques for attosecond-scale delays of atomic and molecular single photon processes like photoemission and photoionization. Ionization-delay measurements in atomic targets provide a wealth of information about the timing of the photoelectric effect, resonances, electron correlations and transport.

<span class="mw-page-title-main">Mohammed Tharwat Hassan</span> Egyptian scientist

Mohammed Tharwat Hassan Arabic: محمد ثروت حسن is a professor of physics and optical sciences at the University of Arizona in the United States.

<span class="mw-page-title-main">Randy Bartels</span>

Randy Alan Bartels is an American investigator at the Morgridge Institute for Research and a professor of Biomedical Engineering at the University of Wisconsin–Madison. He has been awarded the Adolph Lomb Medal from the Optical Society of America, a National Science Foundation CAREER award, a Sloan Research Fellowship in physics, an Office of Naval Research Young Investigator Award, a Beckman Young Investigator Award, and a Presidential Early Career Award for Science and Engineering (PECASE). In 2020 and 2022, he received support from the Chan Zuckerberg Initiative to develop microscope technologies for imaging tissues and cells. 

References

  1. Barwick, Brett; Flannigan, David J.; Zewail, Ahmed H. (December 2009). "Photon-induced near-field electron microscopy". Nature. 462 (7275): 902–906. doi:10.1038/nature08662. eISSN   1476-4687. ISSN   0028-0836. PMID   20016598. S2CID   4423704.
  2. Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F (2 March 2015). "Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field". Nature Communications. 6 (1): 6407. doi:10.1038/ncomms7407. eISSN   2041-1723. PMC   4366487 . PMID   25728197.
  3. Barwick, Brett; Zewail, Ahmed H. (2015-10-21). "Photonics and Plasmonics in 4D Ultrafast Electron Microscopy". ACS Photonics. 2 (10): 1391–1402. doi: 10.1021/acsphotonics.5b00427 . ISSN   2330-4022.
  4. S. T. Park; M. Lin; A. H. Zewail (December 2010). "Photon-induced near-field electron microscopy (PINEM): theoretical and experimental". New Journal of Physics. 12 (12): 123028. doi: 10.1088/1367-2630/12/12/123028 . S2CID   9985483.
  5. F. J. García de Abajo; A. Asenjo-Garcia; M. Kociak (April 2010). "Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields". Nano Letters. 10 (5): 1859–1863. doi:10.1021/nl100613s. PMID   20415459.
  6. 1 2 3 A. Feist; K. E. Echternkamp; J. Schauss; S. V. Yalunin; S. Schäfer; C. Ropers (May 2015). "Quantum coherent optical phase modulation in an ultrafast transmission electron microscope". Nature. 521 (7551): 200–203. doi:10.1038/nature14463. PMID   25971512. S2CID   4447578.
  7. I. Madan; G. M. Vanacore; E. Pomarico; G. Berruto; R. J. Lamb; D. McGrouther; T. T. A. Lummen; T. Latychevskaia; F. J. García de Abajo; F. Carbone (May 2019). "Holographic imaging of electromagnetic fields via electron-light quantum interference". Science Advances. 5 (5): eaav8358. doi:10.1126/sciadv.aav8358. PMC   6499551 . PMID   31058225.
  8. Wang, Kangpeng; Dahan, Raphael; Shentcis, Michael; Kauffmann, Yaron; Ben Hayun, Adi; Reinhardt, Ori; Tsesses, Shai; Kaminer, Ido (2020-06-04). "Coherent interaction between free electrons and a photonic cavity". Nature. 582 (7810): 50–54. arXiv: 1908.06206 . doi:10.1038/s41586-020-2321-x. ISSN   0028-0836. PMID   32494081. S2CID   219281767.
  9. Kfir, Ofer; Lourenço-Martins, Hugo; Storeck, Gero; Sivis, Murat; Harvey, Tyler R.; Kippenberg, Tobias J.; Feist, Armin; Ropers, Claus (2020-06-04). "Controlling free electrons with optical whispering-gallery modes". Nature. 582 (7810): 46–49. arXiv: 1910.09540 . doi:10.1038/s41586-020-2320-y. ISSN   0028-0836. PMID   32494079. S2CID   204823876.
  10. Morimoto, Yuya; Baum, Peter (27 November 2017). "Diffraction and microscopy with attosecond electron pulse trains". Nature Physics. 14 (3): 252–256. doi:10.1038/s41567-017-0007-6. eISSN   1745-2481. ISSN   1745-2473. S2CID   125210956.
  11. Kozák, M.; Eckstein, T.; Schönenberger, N.; Hommelhoff, P. (9 October 2017). "Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum". Nature Physics. 14 (2): 121–125. arXiv: 1905.05240 . doi:10.1038/nphys4282. eISSN   1745-2481. ISSN   1745-2473. S2CID   126006282.
  12. Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus (December 2017). "Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy". Nature Photonics. 11 (12): 793–797. arXiv: 1706.03680 . doi:10.1038/s41566-017-0045-8. ISSN   1749-4885. S2CID   119105731.
  13. Vanacore, G. M.; Madan, I.; Berruto, G.; Wang, K.; Pomarico, E.; Lamb, R. J.; McGrouther, D.; Kaminer, I.; Barwick, B.; García de Abajo, F. Javier; Carbone, F. (12 July 2018). "Attosecond coherent control of free-electron wave functions using semi-infinite light fields". Nature Communications. 9 (1): 2694. doi:10.1038/s41467-018-05021-x. eISSN   2041-1723. PMC   6043599 . PMID   30002367.
  14. K. E. Echternkamp; A. Feist; S. Schäfer; C. Ropers (August 2016). "Ramsey-type phase control of free-electron beams". Nature Physics. 12 (11): 1000–1004. arXiv: 1605.00534 . doi:10.1038/NPHYS3844. S2CID   119214197.
  15. G. M. Vanacore; G. Berruto; I. Madan; E. Pomarico; P. Biagioni; R. J. Lamb; D. McGrouther; O. Reinhardt; I. Kaminer; B. Barwick; H. Larocque; V. Grillo; E. Karimi; F. J. García de Abajo; F. Carbone (May 2019). "Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields". Nature Materials. 18 (6): 573–579. doi:10.1038/s41563-019-0336-1. PMID   31061485. S2CID   119186105.