Focused ion beam

Last updated
A FIB workstation Fib.jpg
A FIB workstation

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography (such as in proton beam writing). These are generally quite different systems where the material is modified by other mechanisms.

Contents

Ion beam source

Most widespread instruments are using liquid metal ion sources (LMIS), especially gallium ion sources. Ion sources based on elemental gold and iridium are also available. In a gallium LMIS, gallium metal is placed in contact with a tungsten needle, and heated gallium wets the tungsten and flows to the tip of the needle, where the opposing forces of surface tension and electric field form the gallium into a cusp shaped tip called a Taylor cone. The tip radius of this cone is extremely small (~2 nm). The huge electric field at this small tip (greater than 1×108 volts per centimeter) causes ionization and field emission of the gallium atoms.

Source ions are then generally accelerated to an energy of 1–50 kiloelectronvolts (0.16–8.01  fJ ), and focused onto the sample by electrostatic lenses. LMIS produce high current density ion beams with very small energy spread. A modern FIB can deliver tens of nanoamperes of current to a sample, or can image the sample with a spot size on the order of a few nanometers.

More recently, instruments using plasma beams of noble gas ions, such as xenon, have become available more widely. [1]

Principle

The principle of FIB Principe FIB-en.svg
The principle of FIB

Focused ion beam (FIB) systems have been produced commercially for approximately twenty years, primarily for large semiconductor manufacturers. FIB systems operate in a similar fashion to a scanning electron microscope (SEM) except, rather than a beam of electrons and as the name implies, FIB systems use a finely focused beam of ions (usually gallium) that can be operated at low beam currents for imaging or at high beam currents for site specific sputtering or milling.

As the diagram on the right shows, the gallium (Ga+) primary ion beam hits the sample surface and sputters a small amount of material, which leaves the surface as either secondary ions (i+ or i−) or neutral atoms (n0). The primary beam also produces secondary electrons (e). As the primary beam rasters on the sample surface, the signal from the sputtered ions or secondary electrons is collected to form an image.

At low primary beam currents, very little material is sputtered and modern FIB systems can easily achieve 5 nm imaging resolution (imaging resolution with Ga ions is limited to ~5 nm by sputtering [2] [3] and detector efficiency). At higher primary currents, a great deal of material can be removed by sputtering, allowing precision milling of the specimen down to a sub micrometer or even a nano scale.

If the sample is non-conductive, a low energy electron flood gun can be used to provide charge neutralization. In this manner, by imaging with positive secondary ions using the positive primary ion beam, even highly insulating samples may be imaged and milled without a conducting surface coating, as would be required in an SEM.

Until recently, the overwhelming usage of FIB has been in the semiconductor industry. Such applications as defect analysis, circuit modification, photomask repair and transmission electron microscope (TEM) sample preparation of site specific locations on integrated circuits have become commonplace procedures. The latest FIB systems have high resolution imaging capability; this capability coupled with in situ sectioning has eliminated the need, in many cases, to examine FIB sectioned specimens in a separate SEM instrument. [4] SEM imaging is still required for the highest resolution imaging and to prevent damage to sensitive samples. However, the combination of SEM and FIB columns onto the same chamber enables the benefits of both to be utilized.

FIB imaging

At lower beam currents, FIB imaging resolution begins to rival the more familiar scanning electron microscope (SEM) in terms of imaging topography, however the FIB's two imaging modes, using secondary electrons and secondary ions, both produced by the primary ion beam, offer many advantages over SEM.

Correlative light-ion microscopy of cells on glass. Color image obtained by fluorescence microscope, black-and-white image obtained by scanning ion microscope and London skyline milled by focused ion beam. Sergio Bertazzo - CLIM.jpg
Correlative light-ion microscopy of cells on glass. Color image obtained by fluorescence microscope, black-and-white image obtained by scanning ion microscope and London skyline milled by focused ion beam.

FIB secondary electron images show intense grain orientation contrast. As a result, grain morphology can be readily imaged without resorting to chemical etching. Grain boundary contrast can also be enhanced through careful selection of imaging parameters. FIB secondary ion images also reveal chemical differences, and are especially useful in corrosion studies, as secondary ion yields of metals can increase by three orders of magnitude in the presence of oxygen, clearly revealing the presence of corrosion. [7]

Another advantage of FIB secondary electron imaging is the fact that the ion beam does not alter the signal from fluorescent probes used in the labelling of proteins, thus creating the opportunity to correlate FIB secondary electron images with images obtained by fluorescence microscopes. [5] [6]

Etching

Unlike an electron microscope, FIB is inherently destructive to the specimen. When the high-energy gallium ions strike the sample, they will sputter atoms from the surface. Gallium atoms will also be implanted into the top few nanometers of the surface, and the surface will be made amorphous.

Because of the sputtering capability, the FIB is used as a micro- and nano-machining tool, to modify or machine materials at the micro- and nanoscale. FIB micro machining has become a broad field of its own, but nano machining with FIB is a field that is still developing. Commonly the smallest beam size for imaging is 2.5–6 nm. The smallest milled features are somewhat larger (10–15 nm) as this is dependent on the total beam size and interactions with the sample being milled.

FIB tools are designed to etch or machine surfaces, an ideal FIB might machine away one atom layer without any disruption of the atoms in the next layer, or any residual disruptions above the surface. Yet currently because of the sputter the machining typically roughens surfaces at the sub-micrometer length scales. [8] [9]

Deposition

A FIB can also be used to deposit material via ion beam induced deposition. FIB-assisted chemical vapor deposition occurs when a gas, such as tungsten hexacarbonyl (W(CO)6) is introduced to the vacuum chamber and allowed to chemisorb onto the sample. By scanning an area with the beam, the precursor gas will be decomposed into volatile and non-volatile components; the non-volatile component, such as tungsten, remains on the surface as a deposition. This is useful, as the deposited metal can be used as a sacrificial layer, to protect the underlying sample from the destructive sputtering of the beam. From nanometers to hundred of micrometers in length, tungsten metal deposition allows metal lines to be put right where needed. Other materials such as platinum, cobalt, carbon, gold, etc., can also be locally deposited. [8] [9] Gas assisted deposition and FIB etching process are shown below. [10]

FIB is often used in the semiconductor industry to patch or modify an existing semiconductor device. For example, in an integrated circuit, the gallium beam could be used to cut unwanted electrical connections, and/or to deposit conductive material in order to make a connection. The high level of surface interaction is exploited in patterned doping of semiconductors. FIB is also used for maskless implantation.

For TEM preparation

TEM sample prepared using a FIB, shown at different length scales. The two left images show the sample imaged using secondary electrons acquired on the FIB which prepared the sample. The right image showing the sample imaged using atomic resolution scanning transmission electron microscopy. Fib sample preparation tem.jpg
TEM sample prepared using a FIB, shown at different length scales. The two left images show the sample imaged using secondary electrons acquired on the FIB which prepared the sample. The right image showing the sample imaged using atomic resolution scanning transmission electron microscopy.

The FIB is also commonly used to prepare samples for the transmission electron microscope. The TEM requires very thin samples, typically ~100 nanometers or less. Other techniques, such as ion milling or electropolishing can be used to prepare such thin samples. However, the nanometer-scale resolution of the FIB allows the exact region of interest to be chosen, such as perhaps a grain boundary or defect in a material. This is vital, for example, in integrated circuit failure analysis. If a particular transistor out of several million on a chip is bad, the only tool capable of preparing an electron microscope sample of that single transistor is the FIB. [8] [9] The same protocol used for preparing samples to transmission electron microscopy can also be used to select a micro area of a sample, extract it and prepare it for analysis using a Secondary ion mass spectrometry (SIMS). [11]

The drawbacks to FIB sample preparation are the above-mentioned surface damage and implantation, which produce noticeable effects when using techniques such as high-resolution "lattice imaging" TEM or electron energy loss spectroscopy. This damaged layer can be minimized by FIB milling with lower beam voltages, or by further milling with a low-voltage argon ion beam after completion of the FIB process. [12]

FIB preparation can be used with cryogenically frozen samples in a suitably equipped instrument, allowing cross sectional analysis of samples containing liquids or fats, such as biological samples, pharmaceuticals, foams, inks, and food products. [13]

FIB is also used for secondary ion mass spectrometry (SIMS). The ejected secondary ions are collected and analyzed after the surface of the specimen has been sputtered with a primary focused ion beam.

For transfer of sensitive samples

For a minimal introduction of stress and bending to transmission electron microscopy (TEM) samples (lamellae, thin films, and other mechanically and beam sensitive samples), when transferring inside a focused ion beam (FIB), flexible metallic nanowires can be attached to a typically rigid micromanipulator.

The main advantages of this method include a significant reduction of sample preparation time (quick welding and cutting of nanowire at low beam current), and minimization of stress-induced bending, Pt contamination, and ion beam damage. [14]

This technique is particularly suitable for in situ electron microscopy sample preparation.

For Atom Probe sample preparation

The same successive milling steps applied when making TEM samples can be applied to make conical samples for atom probe tomography. In this case the ion moved in an annular milling pattern with the inner milling circle being made progressively smaller. The beam current is generally reduced the smaller the inner circle becomes to avoid damaging or destroying the sample. [15]

FIB tomography

The focused ion beam has become a powerful tool for site-specific 3D imaging of sub-micron features in a sample. In this FIB tomography technique, the sample is sequentially milled using an ion beam perpendicular to the specimen while imaging the newly exposed surface using an electron beam. This so-called, slice and view approach allows larger scale nano-structures to be characterized across the many imaging modes available to an SEM, including secondary electron, backscattered electron, and energy dispersive x-ray measurement. The process is destructive, since the specimen is being sequentially milled away after each image is collected. The collected series of images is then reconstructed to a 3D volume by registering the image stack and removing artifacts. The predominant artifact that degrades FIB tomography is ion mill curtaining, where mill patterns form large aperiodic stripes in each image. The ion mill curtaining can be removed using destriping algorithms. FIB tomography can be done at both room and cryo temperatures as well as on both materials and biological samples.

History

History of FIB technology

Physics of LMIS

Some pioneers of LMIS and FIB [20]

Helium ion microscope (HeIM)

Another ion source seen in commercially available instruments is a helium ion source, which is inherently less damaging to the sample than Ga ions although it will still sputter small amounts of material especially at high magnifications and long scan times. As helium ions can be focused into a small probe size and provide a much smaller sample interaction than high energy (>1 kV) electrons in the SEM, the He ion microscope can generate equal or higher resolution images with good material contrast and a higher depth of focus. Commercial instruments are capable of sub 1 nm resolution. [21] [22]

Wien filter in focused ion beam setup

Mass selection in the FIB column Wien filter.jpg
Mass selection in the FIB column

Imaging and milling with Ga ions always result in Ga incorporation near the sample surface. As the sample surface is sputtered away at a rate proportional to the sputtering yield and the ion flux (ions per area per time), the Ga is implanted further into the sample, and a steady-state profile of Ga is reached. This implantation is often a problem in the range of the semiconductor where silicon can be amorphised by the gallium. In order to get an alternative solution to Ga LMI sources, mass-filtered columns have been developed, based on a Wien filter technology. Such sources include Au-Si, Au-Ge and Au-Si-Ge sources providing Si, Cr, Fe, Co, Ni, Ge, In, Sn, Au, Pb and other elements.

The principle of a Wien filter is based on the equilibrium of the opposite forces induced by perpendicular electrostatic and a magnetic fields acting on accelerated particles. The proper mass trajectory remains straight and passes through the mass selection aperture while the other masses are stopped. [23]

Besides allowing the use of sources others than gallium, these columns can switch from different species simply by adjusting the properties of the Wien filter. Larger ions can be used to make rapid milling before refining the contours with smaller ones. Users also benefits from the possibility to dope their samples with elements of suitable alloy sources.

The latter property has found great interests in the investigation of magnetic materials and devices. Khizroev and Litvinov have shown, with the help of magnetic force microscopy (MFM), that there is a critical dose of ions that a magnetic material can be exposed to without experiencing a change in the magnetic properties. Exploiting FIB from such an unconventional perspective is especially favourable today when the future of so many novel technologies depends on the ability to rapidly fabricate prototype nanoscale magnetic devices. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Electron microscope</span> Type of microscope with electrons as a source of illumination

An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:

<span class="mw-page-title-main">Microscope</span> Scientific instrument

A microscope is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope.

<span class="mw-page-title-main">Scanning electron microscope</span> Electron microscope where a small beam is scanned across a sample

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector. The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

<span class="mw-page-title-main">Transmission electron microscopy</span> Imaging and diffraction using electrons that pass through samples

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

<span class="mw-page-title-main">Scanning transmission electron microscopy</span> Scanning microscopy using thin samples and transmitted electrons

A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data.

<span class="mw-page-title-main">Cryogenic electron tomography</span>

Cryogenic electron tomography (cryoET) is an imaging technique used to reconstruct high-resolution (~1–4 nm) three-dimensional volumes of samples, often biological macromolecules and cells. cryoET is a specialized application of transmission electron cryomicroscopy (CryoTEM) in which samples are imaged as they are tilted, resulting in a series of 2D images that can be combined to produce a 3D reconstruction, similar to a CT scan of the human body. In contrast to other electron tomography techniques, samples are imaged under cryogenic conditions. For cellular material, the structure is immobilized in non-crystalline, vitreous ice, allowing them to be imaged without dehydration or chemical fixation, which would otherwise disrupt or distort biological structures.

<span class="mw-page-title-main">Scanning helium ion microscope</span>

A scanning helium ion microscope is an imaging technology based on a scanning helium ion beam. Similar to other focused ion beam techniques, it allows to combine milling and cutting of samples with their observation at sub-nanometer resolution.

<span class="mw-page-title-main">Characterization (materials science)</span> Study of material structure and properties

Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. The scope of the term often differs; some definitions limit the term's use to techniques which study the microscopic structure and properties of materials, while others use the term to refer to any materials analysis process including macroscopic techniques such as mechanical testing, thermal analysis and density calculation. The scale of the structures observed in materials characterization ranges from angstroms, such as in the imaging of individual atoms and chemical bonds, up to centimeters, such as in the imaging of coarse grain structures in metals.

Ion-Beam sculpting is a two-step process to make solid-state nanopores. The term itself was coined by Golovchenko and co-workers at Harvard in the paper "Ion-beam sculpting at nanometer length scales." In the process, solid-state nanopores are formed by lateral mass transport about the surface of the substrate, not simply by sputtering, which is the removal of material from the surface.

Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope, which results in high spatial accuracy and the possibility to produce free-standing, three-dimensional structures.

Jonathan Harris Orloff is an American physicist, author and professor. Born in New York City, he is the eldest son of Monford Orloff and brother of pianist Carole Orloff and historian Chester Orloff. Orloff is known for his major fields of research in charged particle optics, applications of field emission processes, high-brightness electron and ion sources, focused ion and electron beams and their applications for micromachining, surface analysis and microscopy and instrumentation development for semiconductor device manufacturing.

<span class="mw-page-title-main">Raman microscope</span> Laser microscope used for Raman spectroscopy

The Raman microscope is a laser-based microscopic device used to perform Raman spectroscopy. The term MOLE is used to refer to the Raman-based microprobe. The technique used is named after C. V. Raman, who discovered the scattering properties in liquids.

Ion milling is a specialized physical etching technique that is a crucial step in the preparation of material analysis techniques. After a specimen goes through ion milling, the surface becomes much smoother and more defined, which allows scientists to study the material much easier. The ion mill generates high-energy particles to remove material off the surface of a specimen, similar to how sand and dust particles wear away at rocks in a canyon to create a smooth surface. Relative to other techniques, ion milling creates much less surface damage, which makes it perfect for surface-sensitive analytical techniques. This article discusses the principle, equipment, applications, and significance of ion milling.

Serial block-face scanning electron microscopy is a method to generate high resolution three-dimensional images from small samples. The technique was developed for brain tissue, but it is widely applicable for any biological samples. A serial block-face scanning electron microscope consists of an ultramicrotome mounted inside the vacuum chamber of a scanning electron microscope. Samples are prepared by methods similar to that in transmission electron microscopy (TEM), typically by fixing the sample with aldehyde, staining with heavy metals such as osmium and uranium then embedding in an epoxy resin. The surface of the block of resin-embedded sample is imaged by detection of back-scattered electrons. Following imaging the ultramicrotome is used to cut a thin section from the face of the block. After the section is cut, the sample block is raised back to the focal plane and imaged again. This sequence of sample imaging, section cutting and block raising can acquire many thousands of images in perfect alignment in an automated fashion. Practical serial block-face scanning electron microscopy was invented in 2004 by Winfried Denk at the Max-Planck-Institute in Heidelberg and is commercially available from Gatan Inc., Thermo Fisher Scientific (VolumeScope) and ConnectomX.

In situ electron microscopy is an investigatory technique where an electron microscope is used to watch a sample's response to a stimulus in real time. Due to the nature of the high-energy beam of electrons used to image a sample in an electron microscope, microscopists have long observed that specimens are routinely changed or damaged by the electron beam. Starting in the 1960s, and using transmission electron microscopes (TEMs), scientists made deliberate attempts to modify materials while the sample was in the specimen chamber, and to capture images through time of the induced damages.

<span class="mw-page-title-main">Nanoscale secondary ion mass spectrometry</span>

NanoSIMS is an analytical instrument manufactured by CAMECA which operates on the principle of secondary ion mass spectrometry. The NanoSIMS is used to acquire nanoscale resolution measurements of the elemental and isotopic composition of a sample. The NanoSIMS is able to create nanoscale maps of elemental or isotopic distribution, parallel acquisition of up to seven masses, isotopic identification, high mass resolution, subparts-per-million sensitivity with spatial resolution down to 50 nm.

A probe tip is an instrument used in scanning probe microscopes (SPMs) to scan the surface of a sample and make nano-scale images of surfaces and structures. The probe tip is mounted on the end of a cantilever and can be as sharp as a single atom. In microscopy, probe tip geometry and the composition of both the tip and the surface being probed directly affect resolution and imaging quality. Tip size and shape are extremely important in monitoring and detecting interactions between surfaces. SPMs can precisely measure electrostatic forces, magnetic forces, chemical bonding, Van der Waals forces, and capillary forces. SPMs can also reveal the morphology and topography of a surface.

Transmission Kikuchi Diffraction (TKD), also sometimes called transmission-electron backscatter diffraction (t-EBSD), is a method for orientation mapping at the nanoscale. It’s used for analysing the microstructures of thin transmission electron microscopy (TEM) specimens in the scanning electron microscope (SEM). This technique has been widely utilised in the characterization of nano-crystalline materials, including oxides, superconductors, and metallic alloys.

References

  1. Burnett, T.L.; Kelley, R.; Winiarski, B.; Contreras, L.; Daly, M.; Gholinia, A.; Burke, M.G.; Withers, P.J. (2016-02-01). "Large volume serial section tomography by Xe Plasma FIB dual beam microscopy". Ultramicroscopy. 161: 119–129. doi: 10.1016/j.ultramic.2015.11.001 . ISSN   0304-3991. PMID   26683814.
  2. Orloff, Jon (1996). "Fundamental limits to imaging resolution for focused ion beams". Journal of Vacuum Science and Technology B. 14 (6): 3759–3763. Bibcode:1996JVSTB..14.3759O. doi:10.1116/1.588663.
  3. Castaldo, V.; Hagen, C. W.; Rieger, B.; Kruit, P. (2008). "Sputtering limits versus signal-to-noise limits in the observation of Sn balls in a Ga[sup +] microscope". Journal of Vacuum Science and Technology B. 26 (6): 2107–2115. Bibcode:2008JVSTB..26.2107C. doi:10.1116/1.3013306.
  4. "Introduction : Focused Ion Beam Systems" . Retrieved 2009-08-06.
  5. 1 2 Smith, C (2012). "Microscopy: Two microscopes are better than one". Nature. 492 (7428): 293–297. Bibcode:2012Natur.492..293S. doi: 10.1038/492293a . PMID   23235883. S2CID   205075538.
  6. 1 2 Bertazzo, S.; et al. (2012). "Correlative Light-Ion Microscopy for Biological Applications". Nanoscale. 4 (9): 2851–2854. Bibcode:2012Nanos...4.2851B. doi:10.1039/c2nr30431g. hdl: 10044/1/21898 . PMID   22466253.
  7. "FIB: Chemical Contrast" . Retrieved 2007-02-28.
  8. 1 2 3 J. Orloff; M. Utlaut; L. Swanson (2003). High Resolution Focused Ion Beams: FIB and Its Applications. Springer Press. ISBN   978-0-306-47350-0.
  9. 1 2 3 L.A. Giannuzzi; F.A. Stevens (2004). Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer Press. ISBN   978-0-387-23116-7.
  10. Koch, J.; Grun, K.; Ruff, M.; Wernhardt, R.; Wieck, A.D. (1999). "Creation of nanoelectronic devices by focused ion beam implantation". IECON '99 Proceedings. The 25th Annual Conference of the IEEE. Vol. 1. pp. 35–39. doi:10.1109/IECON.1999.822165. ISBN   0-7803-5735-3.
  11. Bertazzo, Sergio; Maidment, Susannah C. R.; Kallepitis, Charalambos; Fearn, Sarah; Stevens, Molly M.; Xie, Hai-nan (9 June 2015). "Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens". Nature Communications. 6: 7352. Bibcode:2015NatCo...6.7352B. doi:10.1038/ncomms8352. PMC   4468865 . PMID   26056764.
  12. Principe, E L; Gnauck, P; Hoffrogge, P (2005). "A Three Beam Approach to TEM Preparation Using In-situ Low Voltage Argon Ion Final Milling in a FIB-SEM Instrument". Microscopy and Microanalysis. 11. doi: 10.1017/S1431927605502460 .
  13. "Unique Imaging of Soft Materials Using Cryo-SDB" (PDF). Retrieved 2009-06-06.
  14. Gorji, Saleh; Kashiwar, Ankush; Mantha, Lakshmi S; Kruk, Robert; Witte, Ralf; Marek, Peter; Hahn, Horst; Kübel, Christian; Scherer, Torsten (December 2020). "Nanowire facilitated transfer of sensitive TEM samples in a FIB". Ultramicroscopy. 219: 113075. doi:10.1016/j.ultramic.2020.113075. PMID   33035837. S2CID   222255773.
  15. Miller, M. K.; Russell, K. F. (September 2007). "Atom probe specimen preparation with a dual beam SEM/FIB miller". Ultramicroscopy. 107 (9): 761–6. doi:10.1016/j.ultramic.2007.02.023. PMID   17403581.
  16. Levi-Setti, R. (1974). "Proton scanning microscopy: feasibility and promise". Scanning Electron Microscopy: 125.
  17. W. H. Escovitz; T. R. Fox; R. Levi-Setti (1975). "Scanning Transmission Ion Microscope with a Field Ion Source". Proceedings of the National Academy of Sciences of the United States of America. 72 (5): 1826–1828. Bibcode:1975PNAS...72.1826E. doi: 10.1073/pnas.72.5.1826 . PMC   432639 . PMID   1057173.
  18. Orloff, J.; Swanson, L. (1975). "Study of a field-ionization source for microprobe applications". Journal of Vacuum Science and Technology. 12 (6): 1209. Bibcode:1975JVST...12.1209O. doi:10.1116/1.568497.
  19. Seliger, R.; Ward, J.W.; Wang, V.; Kubena, R.L. (1979). "A high-intensity scanning ion probe with submicrometer spot size". Appl. Phys. Lett. 34 (5): 310. Bibcode:1979ApPhL..34..310S. doi:10.1063/1.90786.
  20. C.A. Volkert; A.M. Minor (2007). "Focused Ion Beam: Microscopy and Micromachining" (PDF). MRS Bulletin. 32 (5): 389–399. doi: 10.1557/mrs2007.62 .
  21. "Carl Zeiss press release". 2008-11-21. Archived from the original on 2009-05-01. Retrieved 2009-06-06.
  22. "Zeiss Orion Helium Ion Microscope Technical Data" (PDF). Archived from the original (PDF) on 2012-03-24. Retrieved 2011-06-02.
  23. Orsay physics work on ExB mass filter Column, 1993
  24. Khizroev S.; Litvinov D. (2004). "Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices". Nanotechnology. 15 (3): R7. Bibcode:2004Nanot..15R...7K. doi:10.1088/0957-4484/15/3/R01. S2CID   250902092.

Further reading