Weak beam dark field (WBDF) microscopy is a type of transmission electron microscopy (TEM) dark field imaging technique that allows for the visualization of crystal defects with high resolution and contrast. Specifically, the technique is mainly used to study crystal defects such as dislocations, stacking faults, and interfaces in crystalline materials. WBDF is a valuable tool for studying the microstructure of materials, as it can provide detailed information about the nature and distribution of defects in crystals. These characteristics can have a significant impact on material properties such as strength, ductility, and corrosion resistance. [1]
WBDF works by using a selected weak first-order diffracted beam from the specimen. This is made possible by tilting the specimen to excite higher angle diffraction spots. The electrons diffracted by the crystal are selected using an objective aperture and selective aperture, which allows only a small fraction of the diffracted electrons to be imaged to the detector. The objective aperture controls size and angle of the incoming beam that is selecting the diffracted beam. The selective aperture selects the area where the diffraction comes from. [1]
The WBDF image is able to highlight the location and type of crystal defects because the lattice bends back to Bragg's diffraction orientation near the defect core. The image can be further enhanced by tilting the crystal in different directions, which changes the orientation of the defects with respect to the electron beam. Under certain special diffraction conditions, dislocations can be imaged as narrow lines. The dislocation lines and Burgers vector can be determined for each dislocation. [2] Also, the movement of dislocations in materials can be studied to determine mobility and subsequent material properties. [3]
One of the first instances in literature which began the development of WBDF is from Hirsch, Howie, and Whelan in 1960. [4] Their paper focused on applying kinematical theory to TEM imaging with emphasis on dislocation and defect imaging. Then, weak-beam techniques were further demonstrated from R. Gever, et al. [5] The authors predicted that even when selecting a weak kinematical spot to form a TEM image, the fringe periodicity is the same as for bright field imaging. Further research into WBDF in 1969 demonstrated the technique's usefulness in imaging dislocations, as developed by Cockayne, Ray and Whelan. [6] Since then, the technique has been widely used for analysis of dislocations and their interactions in crystalline samples. [1]
The weak beam dark field (WBDF) technique is based on using a diffracted beam with a large excitation error () to form an on-axis dark field image. To form an image, a first-order diffraction spot is selected while the sample is tilted to excite a higher angle, typically ~ 3g, diffraction spot. The WBDF g-ng condition means that 1g is the g vector used for forming the image and ng is the excited g vector. The specimen is tilted for the Ewald sphere to intersect the lattice at the origin and 3g as the figure shown. In the figure, , the excitation error, is made to be large such that the origin and the third order diffraction spot intersect with the Ewald sphere and are excited by the electron beam. [7]
Note that under the two-beam conditions, the crystal is tilted in a way that there is only one strong diffracted beam at and all other diffracted beams are weak, ideally in a symmetric way around the direct beam. [6] The intensity of the diffracted beam g in a perfect crystal can be written as an equation below: [1]
Where is the sample thickness, is the extinction distance for diffraction vector g that depends on lattice parameters, atomic number, and the beam electron voltage used, and is the effective excitation error given by the equation: [1]
For the WBDF technique, the excitation error can increase to about 0.2 as well as . When then , and this is known as the kinematical approximation. [6] This theory leads to the main advantages seen from high-contrast defect images from WBDF. From the equation above, it is evident that the intensity decreases as increases. [8]
In the areas of the sample without defects, diffraction intensity is weak which appears as dark areas in the image. However, near the dislocation core, the lattice plane bends back into Bragg's condition, which leads to a bright intensity peak observed as the dislocation line in the WBDF image. The main challenge presented with this technique is the ability to optimally adjust the tilt conditions to minimize the excitation error of the g reflection near the dislocation core so that a sharp dislocation line becomes visible. The exact value of g is not typically exactly 3g as proposed, and is dependent on material properties such as lattice parameter and TEM instrumentation used. [1] [9]
Dislocations in the sample, described by their Burgers vector b, will appear under the diffracted beam, vector g, when . This is important in WBDF imaging because one of the main advantages are the ability to qualitatively and quantitatively describe defects in a given material. There are three main mathematical methods to determine the dislocation peak position as described below. [1] [10]
1. Weak beam criterion: The diffracted beam has the largest intensity when or is zero.
Where z describes the direction of the electron beam and R is the displacement field around the dislocation.
2. Kinematical integral: There is maximized scattering from the transmitted to the diffracted beam when the kinematical integral equation below is maximized. This occurs near the dislocation core in the sample.
3. Computing the contrast: The width of the dislocation peak, represented by , can be narrowed according to the below equation. As the excitation error increases, the width of the dislocation peaks, and therefore the contrast seen in the image near the boundary between the dislocation and the background.
Setting up weak-beam dark-field imaging in transmission electron microscopy involves several steps, which may vary depending on the specific TEM instrument and the sample being analyzed. This may require further optimization and adjustment to achieve the desired image quality and contrast. The general steps include: [1] [6] [11]
WBDF is often used in tandem with other TEM imaging techniques such as bright field (BF) and dark field (DF) imaging. These frequently used techniques similarly create an image from electrons that pass through and interact with the sample, however, the difference lies in the electrons which are selected to fall on the detector, and the degree of sample tilt. [1] This control is allowed by the objective aperture. In BF imaging, the direct beam is selected to create the image, and in DF imaging, the scattered electron beams are used to create an image. Evidently, WBDF also uses scattered beams to form an image, but the difference between DF and WBDF comes from the degree of sample tilt and thus beam intensity on the first order diffraction spot. Shown below, a WBDF sample is tilted to excite the 3g diffraction spot to the Bragg condition, and the first-order diffraction spot is selected. This excitation is seen on the instrument as the diffraction spot getting brighter as the sample is tilted.
The analytical difference between WBDF and BF and DF imaging is that WBDF can achieve high-contrast images of defects and thickness changes in a sample. This is made possible by tilting the sample to increase the intensity of the beam on diffraction spots further from the direct beam. Due to the tilting and subsequent increase in excitation error, the electrons are treated in the kinematical approximation. This is the aspect of WBDF which sets it apart from BF and DF imaging, and allows for high contrast defect characterization. This process is described in more detail in the WBDF theory section. [1]
In this approach, when the specimen is tilted far away from the Bragg condition as it is here, stronger peaks arise from defects in the material which are then able to be in the Bragg condition. In bright field imaging, the width of the dislocation features is larger than in WBDF because the core of the dislocation planes is what is locally bent back into the Bragg condition. When the angle is larger such as in WBDF, the planes need to bend more to satisfy the condition, decreasing the amount of the dislocation line that is shown in the subsequent image. As a result, the diffraction contrast increases as excitation error increases. The high contrast which is seen in WBDF images makes this technique especially useful in comparison to BF and DF since it provides more precise defect analysis. This can help to qualitatively and quantitatively analyze stacking faults, Burgers vectors, and even 3D reconstruction of dislocation networks in a specimen. [12] [13] [14]
The main advantage of using WBDF is the ability to acquire high-contrast images of imperfect specimens for the purpose of studying defects in the material. This technique is not overly complex in its setup and can provide additional quantitative data for imaging a sample via TEM. Some examples of this include higher contrast images of thickness fringes, strain fields, and dissociated dislocations. [1] For example, Feng et al. were able to use WBDF to show waveform contours in a barium titanate sample which demonstrated that strain contours were dependent on the stress state. [15] The bright field images did not clearly show the strain field, while the WBDF was able to clearly show a pattern indicative of strain. In another example, Rakhmonov et al. used WBDF to study how dislocations interact with precipitates in an Al-Cu-Mn-Zr alloy crept at 300 °C, and they observed Orowan loops around precipitates. [16]
The advantage of higher contrast thickness fringes is made possible by a large value which in turn makes be smaller and affects thickness periodicity. This is shown by the equation which comes from the weak beam approximation. When the extinction distance is larger, it increases the fringe separation and fringe width which thus increases the contrast that can be seen in thickness fringes and strain contrast. [1]
Some limitations to WBDF are related to setup conditions, projection errors, and hardware limitations. For setup conditions, it is nontrivial to select the tilt, and therefore the excitation error, that is required for an optimal WBDF image. The 3g condition, in which the sample is tilted to make the 3g diffraction spot have a higher intensity, is a rule of thumb for attaining an image, but is not always true. The lattice parameter of the sample and the wavelength of electrons used can have an effect on the optimized value of s. [1] A smaller value of s can be used to still attain defect information, but determining the tilt angle can take time and this can damage the defect structure of interest. A projection error is found in every WBDF image because the image of any defect is projected in the direction of the k-vector of the diffracted wave. This projection can change depending on the starting parameters used to form the image, and thus the analysis of the defect lines is not straightforward. Finally, there are limitations to the technique based on current instrument limitations such as the CCD cameras used, energy filtering of the electron source, and image processing which helps to rid noise from the image. [1]
One example in literature of the utilization of WBDF microscopy is to quantitatively determine the direction of Burgers vectors for the purpose of characterizing dislocation types. In this case, the authors were able to determine screw and edge dislocations in a perovskite sample by imaging down multiple zone axes and calculating the Burgers vectors by counting the number of thickness fringes which terminate within the sample as opposed to at the edge of the sample. [13] The high contrast from WBDF allows for easier determination of where the terminating edges are located.
The three-dimensional structure of dislocation arrays in GaN are able to be reconstructed by combining the weak beam dark field technique with tomography by Barnard, et al. [9] [14] The hetero-epitaxial GaN grown on sapphire with high dislocation along [0001] was used. The WBDF images were taken from 5° tilt to 120° tilt at constant excitation error, magnification, and rotation. Using back projections and sequentially iterated reconstruction technique, the reconstructed tomographic volume was achieved. The reconstructed volume is able to show threading dislocations, in-plane dislocation, and dislocation interactions. [9] [14]
The advantages of WBDF are utilized to resolve dislocation dynamics in Fe2MnAl single crystals where superdislocations with 4-fold dissociation were imaged. [17] The movement of a superdislocation at the nanometer scale can be seen in the image on the right. In the paper, Liao et al. show that the superdislocations glide in segments. The dislocations with screw character were shown to move in a “locking and unlocking” manner dependent on the pinning of the dislocation. The ability to see how dislocations move in a solid is fundamentally important to materials science and understanding yield stress anomaly of intermetallic compounds.
The technique of WBDF can be further improved by TEM instrument advancements for the electron source and image processing. More specifically, field emission guns (FEGs) and the reduction of energy variation in the electron source can help to get even higher contrast images with higher resolution. Also, improvements to image detectors can help to reduce noise in the image which helps with quantitative analysis of defects in materials. These advancements would be especially helpful because of the weak beam condition. Improvements to contrast can also help with further analysis via high-throughput analysis of defects via computer modeling. This has been previously seen in literature which uses STEM images to train computers to find defects in a material that have high contrast and are more easily processed by the program. [18] [19] [20]
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.
Electron diffraction is a general term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. Close to the atoms the changes are described as Fresnel diffraction; far away they are called Fraunhofer diffraction. The resulting map of the directions of the electrons far from the sample is called a diffraction pattern, see for instance Figure 1. These patterns are similar to x-ray and neutron diffraction patterns, and are used to study the atomic structure of gases, liquids, surfaces and bulk solids. Electron diffraction also plays a major role in the contrast of images in electron microscopes.
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation. A dislocation defines the boundary between slipped and unslipped regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and arrangement of dislocations influences many of the properties of materials.
The Ewald sphere is a geometric construction used in electron, neutron, and x-ray diffraction which shows the relationship between:
Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery.
A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data.
Selected area (electron) diffraction is a crystallographic experimental technique typically performed using a transmission electron microscope (TEM). It is a specific case of electron diffraction used primarily in material science and solid state physics as one of the most common experimental techniques. Especially with appropriate analytical software, SAD patterns (SADP) can be used to determine crystal orientation, measure lattice constants or examine its defects.
High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp2-bonded carbon. While this term is often also used to refer to high resolution scanning transmission electron microscopy, mostly in high angle annular dark field mode, this article describes mainly the imaging of an object by recording the two-dimensional spatial wave amplitude distribution in the image plane, similar to a "classic" light microscope. For disambiguation, the technique is also often referred to as phase contrast transmission electron microscopy, although this term is less appropriate. At present, the highest point resolution realised in high resolution transmission electron microscopy is around 0.5 ångströms (0.050 nm). At these small scales, individual atoms of a crystal and defects can be resolved. For 3-dimensional crystals, it is necessary to combine several views, taken from different angles, into a 3D map. This technique is called electron tomography.
Dark-field microscopy describes microscopy methods, in both light and electron microscopy, which exclude the unscattered beam from the image. Consequently, the field around the specimen is generally dark.
Diffraction topography is a imaging technique based on Bragg diffraction. Diffraction topographic images ("topographies") record the intensity profile of a beam of X-rays diffracted by a crystal. A topography thus represents a two-dimensional spatial intensity mapping of reflected X-rays, i.e. the spatial fine structure of a Laue reflection. This intensity mapping reflects the distribution of scattering power inside the crystal; topographs therefore reveal the irregularities in a non-ideal crystal lattice. X-ray diffraction topography is one variant of X-ray imaging, making use of diffraction contrast rather than absorption contrast which is usually used in radiography and computed tomography (CT). Topography is exploited to a lesser extends with neutrons, and has similarities to dark field imaging in the electron microscope community.
Electron tomography (ET) is a tomography technique for obtaining detailed 3D structures of sub-cellular, macro-molecular, or materials specimens. Electron tomography is an extension of traditional transmission electron microscopy and uses a transmission electron microscope to collect the data. In the process, a beam of electrons is passed through the sample at incremental degrees of rotation around the center of the target sample. This information is collected and used to assemble a three-dimensional image of the target. For biological applications, the typical resolution of ET systems are in the 5–20 nm range, suitable for examining supra-molecular multi-protein structures, although not the secondary and tertiary structure of an individual protein or polypeptide. Recently, atomic resolution in 3D electron tomography reconstructions has been demonstrated.
Low-energy electron microscopy, or LEEM, is an analytical surface science technique used to image atomically clean surfaces, atom-surface interactions, and thin (crystalline) films. In LEEM, high-energy electrons are emitted from an electron gun, focused using a set of condenser optics, and sent through a magnetic beam deflector. The “fast” electrons travel through an objective lens and begin decelerating to low energies near the sample surface because the sample is held at a potential near that of the gun. The low-energy electrons are now termed “surface-sensitive” and the near-surface sampling depth can be varied by tuning the energy of the incident electrons. The low-energy elastically backscattered electrons travel back through the objective lens, reaccelerate to the gun voltage, and pass through the beam separator again. However, now the electrons travel away from the condenser optics and into the projector lenses. Imaging of the back focal plane of the objective lens into the object plane of the projector lens produces a diffraction pattern at the imaging plane and recorded in a number of different ways. The intensity distribution of the diffraction pattern will depend on the periodicity at the sample surface and is a direct result of the wave nature of the electrons. One can produce individual images of the diffraction pattern spot intensities by turning off the intermediate lens and inserting a contrast aperture in the back focal plane of the objective lens, thus allowing for real-time observations of dynamic processes at surfaces. Such phenomena include : tomography, phase transitions, adsorption, reaction, segregation, thin film growth, etching, strain relief, sublimation, and magnetic microstructure. These investigations are only possible because of the accessibility of the sample; allowing for a wide variety of in situ studies over a wide temperature range. LEEM was invented by Ernst Bauer in 1962; however, not fully developed until 1985.
The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.
In crystallography, a stacking fault is a planar defect that can occur in crystalline materials. Crystalline materials form repeating patterns of layers of atoms. Errors can occur in the sequence of these layers and are known as stacking faults. Stacking faults are in a higher energy state which is quantified by the formation enthalpy per unit area called the stacking-fault energy. Stacking faults can arise during crystal growth or from plastic deformation. In addition, dislocations in low stacking-fault energy materials typically dissociate into an extended dislocation, which is a stacking fault bounded by partial dislocations.
Precession electron diffraction (PED) is a specialized method to collect electron diffraction patterns in a transmission electron microscope (TEM). By rotating (precessing) a tilted incident electron beam around the central axis of the microscope, a PED pattern is formed by integration over a collection of diffraction conditions. This produces a quasi-kinematical diffraction pattern that is more suitable as input into direct methods algorithms to determine the crystal structure of the sample.
Electron channelling contrast imaging (ECCI) is a scanning electron microscope (SEM) diffraction technique used in the study of defects in materials. These can be dislocations or stacking faults that are close to the surface of the sample, low angle grain boundaries or atomic steps. Unlike the use of transmission electron microscopy (TEM) for the investigation of dislocations, the ECCI approach has been called a rapid and non-destructive characterisation technique
Convergent beam electron diffraction (CBED) is an electron diffraction technique where a convergent or divergent beam of electrons is used to study materials.
4D scanning transmission electron microscopy is a subset of scanning transmission electron microscopy (STEM) which utilizes a pixelated electron detector to capture a convergent beam electron diffraction (CBED) pattern at each scan location. This technique captures a 2 dimensional reciprocal space image associated with each scan point as the beam rasters across a 2 dimensional region in real space, hence the name 4D STEM. Its development was enabled by evolution in STEM detectors and improvements computational power. The technique has applications in visual diffraction imaging, phase orientation and strain mapping, phase contrast analysis, among others.
Dark-field X-ray microscopy is an imaging technique used for multiscale structural characterisation. It is capable of mapping deeply embedded structural elements with nm-resolution using synchrotron X-ray diffraction-based imaging. The technique works by using scattered X-rays to create a high degree of contrast, and by measuring the intensity and spatial distribution of the diffracted beams, it is possible to obtain a three-dimensional map of the sample's structure, orientation, and local strain.