Burgers vector

Last updated

In materials science, the Burgers vector, named after Dutch physicist Jan Burgers, is a vector, often denoted as b, that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice. [1]

Contents

Concepts

Burgers vector in an edge dislocation (left) and in a screw dislocation (right). The edge dislocation can be imagined as the introduction of a half plane (gray boxes) that does not fit the crystal symmetry. The screw dislocation can be imagined as cut and shear operation along a half plane. Burgers Vector and dislocations (screw and edge type).svg
Burgers vector in an edge dislocation (left) and in a screw dislocation (right). The edge dislocation can be imagined as the introduction of a half plane (gray boxes) that does not fit the crystal symmetry. The screw dislocation can be imagined as cut and shear operation along a half plane.

The vector's magnitude and direction is best understood when the dislocation-bearing crystal structure is first visualized without the dislocation, that is, the perfect crystal structure. In this perfect crystal structure, a rectangle whose lengths and widths are integer multiples of a (the unit cell edge length) is drawn encompassing the site of the original dislocation's origin. Once this encompassing rectangle is drawn, the dislocation can be introduced. This dislocation will have the effect of deforming, not only the perfect crystal structure, but the rectangle as well. The said rectangle could have one of its sides disjoined from the perpendicular side, severing the connection of the length and width line segments of the rectangle at one of the rectangle's corners, and displacing each line segment from each other. What was once a rectangle before the dislocation was introduced is now an open geometric figure, whose opening defines the direction and magnitude of the Burgers vector. Specifically, the breadth of the opening defines the magnitude of the Burgers vector, and, when a set of fixed coordinates is introduced, an angle between the termini of the dislocated rectangle's length line segment and width line segment may be specified.

When calculating the Burgers vector practically, one may draw a rectangular clockwise circuit (Burgers circuit) from a starting point to enclose the dislocation. The Burgers vector will be the vector to complete the circuit, i.e., from the start to the end of the circuit. [2]

One can also use a counterclockwise Burgers circuit from a starting point to enclose the dislocation. The Burgers vector will instead be from the end to the start of the circuit (see picture above). [3]

The direction of the vector depends on the plane of dislocation, which is usually on one of the closest-packed crystallographic planes. The magnitude is usually represented by the equation (For BCC and FCC lattices only):

where a is the unit cell edge length of the crystal, is the magnitude of the Burgers vector, and h, k, and l are the components of the Burgers vector, the coefficient is owing to the fact that in BCC and FCC lattices, the shortest lattice vectors could be as expressed Comparatively, for simple cubic lattices, and hence the magnitude is represented by

Generally, the Burgers vector of a dislocation is defined by performing a line integral over the distortion field around the dislocation line

where the integration path L is a Burgers circuit around the dislocation line, ui is the displacement field, and is the distortion field.

In most metallic materials, the magnitude of the Burgers vector for a dislocation is of a magnitude equal to the interatomic spacing of the material, since a single dislocation will offset the crystal lattice by one close-packed crystallographic spacing unit.

In edge dislocations, the Burgers vector and dislocation line are perpendicular to one another. In screw dislocations, they are parallel. [4]

The Burgers vector is significant in determining the yield strength of a material by affecting solute hardening, precipitation hardening and work hardening. The Burgers vector plays an important role in determining the direction of dislocation line.

See also

Related Research Articles

<span class="mw-page-title-main">Poynting vector</span> Measure of directional electromagnetic energy flux

In physics, the Poynting vector represents the directional energy flux or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m2); kg/s3 in base SI units. It is named after its discoverer John Henry Poynting who first derived it in 1884. Nikolay Umov is also credited with formulating the concept. Oliver Heaviside also discovered it independently in the more general form that recognises the freedom of adding the curl of an arbitrary vector field to the definition. The Poynting vector is used throughout electromagnetics in conjunction with Poynting's theorem, the continuity equation expressing conservation of electromagnetic energy, to calculate the power flow in electromagnetic fields.

In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

<span class="mw-page-title-main">Equipartition theorem</span> Theorem in classical statistical mechanics

In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in translational motion of a molecule should equal that in rotational motion.

<span class="mw-page-title-main">Dislocation</span> Linear crystallographic defect or irregularity

In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation. A dislocation defines the boundary between slipped and unslipped regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and arrangement of dislocations influences many of the properties of materials.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

<span class="mw-page-title-main">Miller index</span> Description of crystal lattice planes

Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

The Debye–Waller factor (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. It is also called the B factor, atomic B factor, or temperature factor. Often, "Debye–Waller factor" is used as a generic term that comprises the Lamb–Mössbauer factor of incoherent neutron scattering and Mössbauer spectroscopy.

In linear algebra, a frame of an inner product space is a generalization of a basis of a vector space to sets that may be linearly dependent. In the terminology of signal processing, a frame provides a redundant, stable way of representing a signal. Frames are used in error detection and correction and the design and analysis of filter banks and more generally in applied mathematics, computer science, and engineering.

In condensed matter physics and crystallography, the static structure factor is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns obtained in X-ray, electron and neutron diffraction experiments.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In solid-state physics, the k·p perturbation theory is an approximated semi-empirical approach for calculating the band structure and optical properties of crystalline solids. It is pronounced "k dot p", and is also called the "k·p method". This theory has been applied specifically in the framework of the Luttinger–Kohn model, and of the Kane model.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

In quantum mechanics, a translation operator is defined as an operator which shifts particles and fields by a certain amount in a certain direction. It is a special case of the shift operator from functional analysis.

In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

Geometrically necessary dislocations are like-signed dislocations needed to accommodate for plastic bending in a crystalline material. They are present when a material's plastic deformation is accompanied by internal plastic strain gradients. They are in contrast to statistically stored dislocations, with statistics of equal positive and negative signs, which arise during plastic flow from multiplication processes like the Frank-Read source.

References

  1. Callister, William D. Jr. "Fundamentals of Materials Science and Engineering," John Wiley & Sons, Inc. Danvers, MA. (2005)/
  2. "Burgers Vector, b". www.princeton.edu.
  3. "Burgers vector, Burgers circuit, and Dislocation Line Direction" (PDF). micro.stanford.edu.
  4. Kittel, Charles, "Introduction to Solid State Physics," 7th edition, John Wiley & Sons, Inc, (1996) pp 592–593.