It has been suggested that this article be merged into Cryogenic electron microscopy . (Discuss) Proposed since July 2024. |
Transmission electron cryomicroscopy (CryoTEM), commonly known as cryo-EM, is a form of cryogenic electron microscopy, more specifically a type of transmission electron microscopy (TEM) where the sample is studied at cryogenic temperatures (generally liquid-nitrogen temperatures). [1] Cryo-EM, specifically 3-dimensional electron microscopy (3DEM), is gaining popularity in structural biology. [2]
The utility of transmission electron cryomicroscopy stems from the fact that it allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment. This is in contrast to X-ray crystallography, which requires crystallizing the specimen, which can be difficult, and placing them in non-physiological environments, which can occasionally lead to functionally irrelevant conformational changes.
Advances in electron detector technology, particularly DED (Direct Electron Detectors) as well as more powerful software imaging algorithms have allowed for the determination of macromolecular structures at near-atomic resolution. [3] Imaged macromolecules include viruses, ribosomes, mitochondria, ion channels, and enzyme complexes. Starting in 2018, cryo-EM could applied to structures as small as hemoglobin (64 kDa) [4] and with resolutions up to 1.8 Å. [5] In 2019, cryo-EM structures represented 2.5% of structures deposited in the Protein Data Bank, [6] and this number continues to grow. [7] An application of cryo-EM is cryo-electron tomography (cryo-ET), where a 3D reconstruction of the sample is created from tilted 2D images.
The original rationale for CryoTEM was as a means to fight radiation damage for biological specimens. The amount of radiation required to collect an image of a specimen in the electron microscope is high enough to be a potential source of specimen damage for delicate structures. In addition, the high vacuum required on the column of an electron microscope makes the environment for the sample quite harsh.
The problem of the vacuum was partially solved by the introduction of negative stains but even with negative stains biological samples are prone to structural collapse upon dehydration of the specimen. Embedding the samples in ice below the sublimation temperature was a possibility that was contemplated early on, but water tends to arrange into a crystalline lattice of lower density upon freezing and this can destroy the structure of anything that is embedded in it.
In the early 1980s, several groups studying solid state physics were attempting to produce vitreous ice by different means, such as high pressure freezing or flash freezing. In a seminal paper in 1984, the group led by Jacques Dubochet at the European Molecular Biology Laboratory showed images of adenovirus embedded in a vitrified layer of water. [8] This paper is generally considered to mark the origin of Cryo-EM, and the technique has been developed to the point of becoming routine at numerous laboratories throughout the world.
The energy of the electrons used for imaging (80–300 kV) is high enough that covalent bonds can be broken. When imaging specimens are vulnerable to radiation damage, it is necessary to limit the electron exposure used to acquire the image. These low exposures require that the images of thousands or even millions of identical frozen molecules be selected, aligned, and averaged to obtain high-resolution maps, using specialized software. A significant improvement in structural features was achieved in 2012 by the introduction of direct electron detectors and better computational algorithms. [1] [2]
In 2015, Bridget Carragher and colleagues at the Scripps National Resource for Automated Molecular Microscopy used techniques she and Clint Potter developed to determine the first cryo-EM structure with a resolution finer than 3 Å, thereby elevating CryoTEM as a tool comparable to and potentially superior to traditional x-ray crystallography techniques. [9] [10] Since then, higher resolutions have been achieved, including a 2.2 Å structure of bacterial enzyme β-galactosidase in 2015 [11] and a 1.8 Å structure of glutamate dehydrogenase in 2016. [12] Cryo-EM has also been used to determine the structure of various viruses, including the Zika virus, [13] and has been applied to large complexes such as the spliceosome. [14] In 2017, the Nobel Prize in Chemistry was awarded jointly to Jacques Dubochet, Joachim Frank and Richard Henderson, "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution". [15]
The biological material is spread on an electron microscopy grid and is preserved in a frozen-hydrated state by rapid freezing, usually in liquid ethane near liquid nitrogen temperature. By maintaining specimens at liquid nitrogen temperature or colder, they can be introduced into the high-vacuum of the electron microscope column. Most biological specimens are extremely radiosensitive, so they must be imaged with low-dose techniques (usefully, the low temperature of transmission electron cryomicroscopy provides an additional protective factor against radiation damage).
Consequently, the images are extremely noisy. For some biological systems it is possible to average images to increase the signal-to-noise ratio and retrieve high-resolution information about the specimen using the technique known as single particle analysis. This approach in general requires that the things being averaged are identical, although some limited conformational heterogeneity can now be studied (e.g. ribosome). Three-dimensional reconstructions from CryoTEM images of protein complexes and viruses have been solved to sub-nanometer or near-atomic resolution, allowing new insights into the structure and biology of these large assemblies.
Analysis of ordered arrays of protein, such as 2-D crystals of transmembrane proteins or helical arrays of proteins, also allows a kind of averaging which can provide high-resolution information about the specimen. This technique is called electron crystallography.
The thin film method is limited to thin specimens (typically < 500 nm) because the electrons cannot cross thicker samples without multiple scattering events. Thicker specimens can be vitrified by plunge freezing (cryofixation) in ethane (up to tens of μm in thickness) or more commonly by high pressure freezing (up to hundreds of μm). They can then be cut in thin sections (40 to 200 nm thick) with a diamond knife in a cryoultramicrotome at temperatures lower than −135 °C (devitrification temperature). The sections are collected on an electron microscope grid and are imaged in the same manner as specimen vitrified in thin film. This technique is called transmission electron cryomicroscopy of vitreous sections (CEMOVIS) or transmission electron cryomicroscopy of frozen-hydrated sections.
In addition to allowing vitrified biological samples to be imaged, CryoTEM can also be used to image material specimens that are too volatile in vacuum to image using standard, room temperature electron microscopy. For example, vitrified sections of liquid-solid interfaces can be extracted for analysis by CryoTEM, [16] and sulfur, which is prone to sublimation in the vacuum of electron microscopes, can be stabilized and imaged in CryoTEM. [17]
Even though in the majority of approaches in electron microscopy one tries to get the best resolution image of the material, it is not always the case in cryo-TEM. Besides all the benefits of high resolution images, the signal to noise ratio remains the main hurdle that prevents assigning orientation to each particle. For example, in macromolecule complexes, there are several different structures that are being projected from 3D to 2D during imaging and if they are not distinguished the result of image processing will be a blur. That is why the probabilistic approaches become more powerful in this type of investigation. [18] There are two popular approaches that are widely used nowadays in cryo-EM image processing, the maximum likelihood approach that was discovered in 1998 [19] and relatively recently adapted Bayesian approach. [20]
The maximum likelihood estimation approach comes to this field from the statistics. Here, all the possible orientations of particles are summed up to get the resulting probability distribution. We can compare this to a typical least square estimation where particles get exact orientations per image. [21] This way, the particles in the sample get "fuzzy" orientations after calculations, weighted by corresponding probabilities. The whole process is iterative and with each next iteration the model gets better. The good conditions for making the model that closely represent the real structure is when the data does not have too much noise and the particles do not have any preferential direction. The main downside of maximum likelihood approach is that the result depends on the initial guess and model optimization can sometimes get stuck at local minimum. [22]
The Bayesian approach that is now being used in cryo-TEM is empirical by nature. This means that the distribution of particles is based on the original dataset. Similarly, in the usual Bayesian method there is a fixed prior probability that is changed after the data is observed. The main difference from the maximum likelihood estimation lies in special reconstruction term that helps smoothing the resulting maps while also decreasing the noise during reconstruction. [21] The smoothing of the maps occurs through assuming prior probability to be a Gaussian distribution and analyzing the data in the Fourier space. Since the connection between the prior knowledge and the dataset is established, there is less chance for human factor errors which potentially increases the objectivity of image reconstruction. [20]
With emerging new methods of cryo-TEM imaging and image reconstruction the new software solutions appear that help to automate the process. After the empirical Bayesian approach have been implemented in the open source computer program RELION (REgularized LIkelihood OptimizatioN) for 3D reconstruction, [23] [24] the program became widespread in the cryo-TEM field. It offers a range of corrections that improve the resolution of reconstructed images, allows implementing versatile scripts using python language and executes the usual tasks of 2D/3D model classifications or creating de novo models. [25] [26]
A variety of techniques can be used in CryoTEM. [27] Popular techniques include:
An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:
Structural biology, as defined by the Journal of Structural Biology, deals with structural analysis of living material at every level of organization.
Electron crystallography is a subset of methods in electron diffraction focusing just upon detailed determination of the positions of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are low-energy electron diffraction which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth.
Cryogenic electron tomography (cryoET) is an imaging technique used to reconstruct high-resolution (~1–4 nm) three-dimensional volumes of samples, often biological macromolecules and cells. cryoET is a specialized application of transmission electron cryomicroscopy (CryoTEM) in which samples are imaged as they are tilted, resulting in a series of 2D images that can be combined to produce a 3D reconstruction, similar to a CT scan of the human body. In contrast to other electron tomography techniques, samples are imaged under cryogenic conditions. For cellular material, the structure is immobilized in non-crystalline, vitreous ice, allowing them to be imaged without dehydration or chemical fixation, which would otherwise disrupt or distort biological structures.
Eva Nogales is a Spanish-American biophysicist at the Lawrence Berkeley National Laboratory and a professor at the University of California, Berkeley, where she served as head of the Division of Biochemistry, Biophysics and Structural Biology of the Department of Molecular and Cell Biology (2015–2020). She is a Howard Hughes Medical Institute investigator.
The EM Data Bank or Electron Microscopy Data Bank (EMDB) collects 3D EM maps and associated experimental data determined using electron microscopy of biological specimens. It was established in 2002 at the MSD/PDBe group of the European Bioinformatics Institute (EBI), where the European site of the EMDataBank.org consortium is located. As of 2015, the resource contained over 2,600 entries with a mean resolution of 15Å.
Resolution in the context of structural biology is the ability to distinguish the presence or absence of atoms or groups of atoms in a biomolecular structure. Usually, the structure originates from methods such as X-ray crystallography, electron crystallography, or cryo-electron microscopy. The resolution is measured of the "map" of the structure produced from experiment, where an atomic model would then be fit into. Due to their different natures and interactions with matter, in X-ray methods the map produced is of the electron density of the system, whereas in electron methods the map is of the electrostatic potential of the system. In both cases, atomic positions are assumed similarly.
Cryofixation is a technique for fixation or stabilisation of biological materials as the first step in specimen preparation for the electron microscopy and cryo-electron microscopy. Typical specimens for cryofixation include small samples of plant or animal tissue, cell suspensions of microorganisms or cultured cells, suspensions of viruses or virus capsids and samples of purified macromolecules, especially proteins.
In structural biology, as well as in virtually all sciences that produce three-dimensional data, the Fourier shell correlation (FSC) measures the normalised cross-correlation coefficient between two 3-dimensional volumes over corresponding shells in Fourier space (i.e., as a function of spatial frequency). The FSC is the three-dimensional extension of the two-dimensional Fourier ring correlation (FRC); also known as: spatial frequency correlation function.
Single particle analysis is a group of related computerized image processing techniques used to analyze images from transmission electron microscopy (TEM). These methods were developed to improve and extend the information obtainable from TEM images of particulate samples, typically proteins or other large biological entities such as viruses. Individual images of stained or unstained particles are very noisy, and so hard to interpret. Combining several digitized images of similar particles together gives an image with stronger and more easily interpretable features. An extension of this technique uses single particle methods to build up a three-dimensional reconstruction of the particle. Using cryo-electron microscopy it has become possible to generate reconstructions with sub-nanometer resolution and near-atomic resolution first in the case of highly symmetric viruses, and now in smaller, asymmetric proteins as well. Single particle analysis can also be performed by inductively coupled plasma mass spectrometry (ICP-MS).
The term macromolecular assembly (MA) refers to massive chemical structures such as viruses and non-biologic nanoparticles, cellular organelles and membranes and ribosomes, etc. that are complex mixtures of polypeptide, polynucleotide, polysaccharide or other polymeric macromolecules. They are generally of more than one of these types, and the mixtures are defined spatially, and with regard to their underlying chemical composition and structure. Macromolecules are found in living and nonliving things, and are composed of many hundreds or thousands of atoms held together by covalent bonds; they are often characterized by repeating units. Assemblies of these can likewise be biologic or non-biologic, though the MA term is more commonly applied in biology, and the term supramolecular assembly is more often applied in non-biologic contexts. MAs of macromolecules are held in their defined forms by non-covalent intermolecular interactions, and can be in either non-repeating structures, or in repeating linear, circular, spiral, or other patterns. The process by which MAs are formed has been termed molecular self-assembly, a term especially applied in non-biologic contexts. A wide variety of physical/biophysical, chemical/biochemical, and computational methods exist for the study of MA; given the scale of MAs, efforts to elaborate their composition and structure and discern mechanisms underlying their functions are at the forefront of modern structure science.
Jacques Dubochet is a retired Swiss biophysicist. He is a former researcher at the European Molecular Biology Laboratory in Heidelberg, Germany, and an honorary professor of biophysics at the University of Lausanne in Switzerland.
Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane. While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy for macromolecular structure determination without the need for crystallization.
Sjors Hendrik Willem ScheresFRS is a Dutch scientist at the MRC Laboratory of Molecular Biology Cambridge, UK.
Bridget Olivia Carragher is a South African physicist specialized in electron microscopy.
Microcrystal electron diffraction, or MicroED, is a CryoEM method that was developed by the Gonen laboratory in late 2013 at the Janelia Research Campus of the Howard Hughes Medical Institute. MicroED is a form of electron crystallography where thin 3D crystals are used for structure determination by electron diffraction. Prior to this demonstration, macromolecular (protein) electron crystallography was mainly used on 2D crystals, for example. The method is one of several modern versions of approaches to determine atomic structures using electron diffraction first demonstrated for the positions of hydrogen atoms in NH4Cl crystals by W. E. Laschkarew and I. D. Usykin in 1933, which has since been used for surfaces, via precession electron diffraction, with much of the early work described in the work of Boris Vainshtein and Douglas L. Dorset.
Kiyoshi Nagai was a Japanese structural biologist at the MRC Laboratory of Molecular Biology Cambridge, UK. He was known for his work on the mechanism of RNA splicing and structures of the spliceosome.
Tanmay A. M. Bharat is a programme leader in the Structural Studies Division of the MRC Laboratory of Molecular Biology. He and his group use electron tomography, together with several structural and cell biology methods to study the cell surfaces of bacteria and archaea. His work has increased the understanding of how surface molecules help in the formation of multicellular communities of prokaryotes, examples of which include biofilms and microbiomes. He has been awarded several prizes and fellowships for his work.
Bubblegram imagining is a technological device developed in 2012 by Dr. Alasdair Steven from NIAMS Laboratory of Structural Biology Research, in collaboration with Dr. Lindsay Black at the University of Maryland Medical School. Where the device or technique is used in research and medical fields in order to identify protein structures of viruses and bacteria. A three-dimensional computer reconstruction is also used to reconstruct the initial images of the specimens before they are destroyed.
Virus crystallisation is the re-arrangement of viral components into solid crystal particles. The crystals are composed of thousands of inactive forms of a particular virus arranged in the shape of a prism. The inactive nature of virus crystals provide advantages for immunologists to effectively analyze the structure and function behind viruses. Understanding of such characteristics have been enhanced thanks to the enhancement and diversity in crystallisation technologies. Virus crystals have a deep history of being widely applied in epidemiology and virology, and still to this day remains a catalyst for studying viral patterns to mitigate potential disease outbreaks.