Precession electron diffraction (PED) is a specialized method to collect electron diffraction patterns in a transmission electron microscope (TEM). By rotating (precessing) a tilted incident electron beam around the central axis of the microscope, a PED pattern is formed by integration over a collection of diffraction conditions. This produces a quasi-kinematical diffraction pattern that is more suitable as input into direct methods algorithms to determine the crystal structure of the sample.
Precession electron diffraction is accomplished utilizing the standard instrument configuration of a modern TEM. The animation illustrates the geometry used to generate a PED pattern. Specifically, the beam tilt coils located pre-specimen are used to tilt the electron beam off of the optic axis so it is incident with the specimen at an angle, φ. The image shift coils post-specimen are then used to tilt the diffracted beams back in a complementary manner such that the direct beam falls in the center of the diffraction pattern. Finally, the beam is precessed around the optic axis while the diffraction pattern is collected over multiple revolutions.
The result of this process is a diffraction pattern that consists of a summation or integration over the patterns generated during precession. While the geometry of this pattern matches the pattern associated with a normally incident beam, the intensities of the various reflections approximate those of the kinematical pattern much more closely. At any moment in time during precession, the diffraction pattern consists of a Laue circle with a radius equal to the precession angle, φ. These snapshots contain far fewer strongly excited reflections than a normal zone axis pattern and extend farther into reciprocal space. Thus, the composite pattern will display far less dynamical character, and will be well suited for use as input into direct methods calculations. [2]
PED possesses many advantageous attributes that make it well suited to investigating crystal structures via direct methods approaches: [1]
Precession electron diffraction is typically conducted using accelerating voltages between 100-400 kV. Patterns can be formed under parallel or convergent beam conditions. Most modern TEMs can achieve a tilt angle, φ, ranging from 0-3°. Precession frequencies can be varied from Hz to kHz, but in standard cases 60 Hz has been used. [1] In choosing a precession rate, it is important to ensure that many revolutions of the beam occur over the relevant exposure time used to record the diffraction pattern. This ensures adequate averaging over the excitation error of each reflection. Beam sensitive samples may dictate shorter exposure times and thus, motivate the use of higher precession frequencies.
One of the most significant parameters affecting the diffraction pattern obtained is the precession angle, φ. In general, larger precession angles result in more kinematical diffraction patterns, but both the capabilities of the beam tilt coils in the microscope and the requirements on the probe size limit how large this angle can become in practice. Because PED takes the beam off of the optic axis by design, it accentuates the effect of the spherical aberrations within the probe forming lens. For a given spherical aberration, Cs, the probe diameter, d, varies with convergence angle, α, and precession angle, φ, as [3]
Thus, if the specimen of interest is quite small, the maximum precession angle will be restrained. This is most significant for conditions of convergent beam illumination. 50 nm is a general lower limit on probe size for standard TEMs operating at high precession angles (>30 mrad), but can be surpassed in Cs corrected instruments. [4] In principle the minimum precessed probe can reach approximately the full-width-half-max (FWHM) of the converged un-precessed probe in any instrument, however in practice the effective precessed probe is typically ~10-50x larger due to uncontrolled aberrations present at high angles of tilt. For example, a 2 nm precessed probe with >40 mrad precession angle was demonstrated in an aberration-corrected Nion UltraSTEM with native sub-Å probe (aberrations corrected to ~35 mrad half-angle). [5]
If the precession angle is made too large, further complications due to the overlap of the ZOLZ and HOLZ reflections in the projected pattern can occur. This complicates the indexing of the diffraction pattern and can corrupt the measured intensities of reflections near the overlap region, thereby reducing the effectiveness of the collected pattern for direct methods calculations.
For an introduction to the theory of electron diffraction, see part 2 of Williams and Carter's Transmission Electron Microscopy text [6]
While it is clear that precession reduces many of the dynamical diffraction effects that plague other forms of electron diffraction, the resulting patterns cannot be considered purely kinematical in general. There are models that attempt to introduce corrections to convert measured PED patterns into true kinematical patterns that can be used for more accurate direct methods calculations, with varying degrees of success. Here, the most basic corrections are discussed. In purely kinematical diffraction, the intensities of various reflections, , are related to the square of the amplitude of the structure factor, by the equation:
This relationship is generally far from accurate for experimental dynamical electron diffraction and when many reflections have a large excitation error. First, a Lorentz correction analogous to that used in x-ray diffraction can be applied to account for the fact that reflections are infrequently exactly at the Bragg condition over the course of a PED measurement. This geometrical correction factor can be shown to assume the approximate form: [7]
where g is the reciprocal space magnitude of the reflection in question and Ro is the radius of the Laue circle, usually taken to be equal to φ. While this correction accounts for the integration over the excitation error, it takes no account for the dynamical effects that are ever-present in electron diffraction. This has been accounted for using a two-beam correction following the form of the Blackman correction originally developed for powder x-ray diffraction. Combining this with the aforementioned Lorentz correction yields:
where , is the sample thickness, and is the wave-vector of the electron beam. is the Bessel function of zeroeth order.
This form seeks to correct for both geometric and dynamical effects, but is still only an approximation that often fails to significantly improve the kinematic quality of the diffraction pattern (sometimes even worsening it). More complete and accurate treatments of these theoretical correction factors have been shown to adjust measured intensities into better agreement with kinematical patterns. For details, see Chapter 4 of reference. [1]
Only by considering the full dynamical model through multislice calculations can the diffraction patterns generated by PED be simulated. However, this requires the crystal potential to be known, and thus is most valuable in refining the crystal potentials suggested through direct methods approaches. The theory of precession electron diffraction is still an active area of research, and efforts to improve on the ability to correct measured intensities without a priori knowledge are ongoing.
The first precession electron diffraction system was developed by Vincent and Midgley in Bristol, UK and published in 1994. Preliminary investigation into the Er2Ge2O7 crystal structure demonstrated the feasibility of the technique at reducing dynamical effects and providing quasi-kinematical patterns that could be solved through direct methods to determine crystal structure. [3] Over the next ten years, a number of university groups developed their own precession systems and verified the technique by solving complex crystal structures, including the groups of J. Gjønnes (Oslo), Migliori (Bologna), and L. Marks (Northwestern). [1] [8] [9] [10] [11]
In 2004, NanoMEGAS developed the first commercial precession system capable of being retrofit to any modern TEM. This hardware solution enabled more widespread implementation of the technique and spurred its more mainstream adoption into the crystallography community. Software methods have also been developed to achieve the necessary scanning and descanning using the built-in electronics of the TEM. [12] HREM Research Inc has developed the QED plug-in for the DigitalMicrograph software. This plug-in enables the widely used software package to collect precession electron diffraction patterns without additional modifications to the microscope.
According to NanoMEGAS, as of June, 2015, more than 200 publications have relied on the technique to solve or corroborate crystal structures; many on materials that could not be solved by other conventional crystallography techniques like x-ray diffraction. Their retrofit hardware system is used in more than 75 laboratories across the world. [13]
The primary goal of crystallography is to determine the three dimensional arrangement of atoms in a crystalline material. While historically, x-ray crystallography has been the predominant experimental method used to solve crystal structures ab initio, the advantages of precession electron diffraction make it one of the preferred methods of electron crystallography.
Mapping the relative orientation of crystalline grains and/or phases helps understand material texture at the micro and nano scales. In a transmission electron microscope, this is accomplished by recording a diffraction pattern at a large number of points (pixels) over a region of the crystalline specimen. By comparing the recorded patterns to a database of known patterns (either previously indexed experimental patterns or simulated patterns), the relative orientation of grains in the field of view can be determined.
Because this process is highly automated, the quality of the recorded diffraction patterns is crucial to the software's ability to accurately compare and assign orientations to each pixel. Thus, the advantages of PED are well-suited for use with this scanning technique. By instead recording a PED pattern at each pixel, dynamical effects are reduced, and the patterns are more easily compared to simulated data, improving the accuracy of the automated phase/orientation assignment. [4]
Although the PED technique was initially developed for its improved diffraction applications, the advantageous properties of the technique have been found to enhance many other investigative techniques in the TEM. These include bright field and dark field imaging, electron tomography, and composition-probing techniques like energy-dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS).
Though many people conceptualize images and diffraction patterns separately, they contain principally the same information. In the simplest approximation, the two are simply Fourier transforms of one another. Thus, the effects of beam precession on diffraction patterns also have significant effects on the corresponding images in the TEM. Specifically, the reduced dynamical intensity transfer between beams that is associated with PED results in reduced dynamical contrast in images collected during precession of the beam. This includes a reduction in thickness fringes, bend contours, and strain fields. [13] While these features can often provide useful information, their suppression enables a more straightforward interpretation of diffraction contrast and mass contrast in images.
In an extension of the application of PED to imaging, electron tomography can benefit from the reduction of dynamic contrast effects. Tomography entails collecting a series of images (2-D projections) at various tilt angles and combining them to reconstruct the three dimensional structure of the specimen. Because many dynamical contrast effects are highly sensitive to the orientation of the crystalline sample with respect to the incident beam, these effects can convolute the reconstruction process in tomography. Similarly to single imaging applications, by reducing dynamical contrast, interpretation of the 2-D projections and thus the 3-D reconstruction are more straightforward.
Energy-dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) are commonly used techniques to both qualitatively and quantitatively probe the composition of samples in the TEM. A primary challenge in the quantitative accuracy of both techniques is the phenomenon of channelling. Put simply, in a crystalline solid, the probability of interaction between an electron and ion in the lattice depends strongly on the momentum (direction and velocity) of the electron. When probing a sample under diffraction conditions near a zone axis, as is often the case in EDS and EELS applications, channelling can have a large impact on the effective interaction of the incident electrons with specific ions in the crystal structure. In practice, this can lead to erroneous measurements of composition that depend strongly on the orientation and thickness of the sample and the accelerating voltage. Since PED entails an integration over incident directions of the electron probe, and generally does not include beams parallel to the zone axis, the detrimental channeling effects outlined above can be minimized, yielding far more accurate composition measurements in both techniques. [29] [30]
X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions. By measuring the angles and intensities of the X-ray diffraction, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal and the positions of the atoms, as well as their chemical bonds, crystallographic disorder, and other information.
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.
Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. The negatively charged electrons are scattered due to Coulomb forces when they interact with both the positively charged atomic core and the negatively charged electrons around the atoms. The resulting map of the directions of the electrons far from the sample is called a diffraction pattern, see for instance Figure 1. Beyond patterns showing the directions of electrons, electron diffraction also plays a major role in the contrast of images in electron microscopes.
Reflection high-energy electron diffraction (RHEED) is a technique used to characterize the surface of crystalline materials. RHEED systems gather information only from the surface layer of the sample, which distinguishes RHEED from other materials characterization methods that also rely on diffraction of high-energy electrons. Transmission electron microscopy, another common electron diffraction method samples mainly the bulk of the sample due to the geometry of the system, although in special cases it can provide surface information. Low-energy electron diffraction (LEED) is also surface sensitive, but LEED achieves surface sensitivity through the use of low energy electrons.
The Ewald sphere is a geometric construction used in electron, neutron, and x-ray diffraction which shows the relationship between:
In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography, where the phase problem has to be solved for the determination of a structure from diffraction data. The phase problem is also met in the fields of imaging and signal processing. Various approaches of phase retrieval have been developed over the years.
Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In the microscope an incident beam of electrons hits a tilted sample. As backscattered electrons leave the sample, they interact with the atoms and are both elastically diffracted and lose energy, leaving the sample at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). The EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. They can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is used for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery.
Electron crystallography is a subset of methods in electron diffraction focusing upon detailed determination of the positions of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are low-energy electron diffraction which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth.
A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data.
Phase-contrast imaging is a method of imaging that has a range of different applications. It measures differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science. In X-ray tomography, the same physical principles can be used to increase image contrast by highlighting small details of differing refractive index within structures that are otherwise uniform. In transmission electron microscopy (TEM), phase contrast enables very high resolution (HR) imaging, making it possible to distinguish features a few Angstrom apart.
The dynamical theory of diffraction describes the interaction of waves with a regular lattice. The wave fields traditionally described are X-rays, neutrons or electrons and the regular lattice are atomic crystal structures or nanometer-scale multi-layers or self-arranged systems. In a wider sense, similar treatment is related to the interaction of light with optical band-gap materials or related wave problems in acoustics. The sections below deal with dynamical diffraction of X-rays.
Low-energy electron diffraction (LEED) is a technique for the determination of the surface structure of single-crystalline materials by bombardment with a collimated beam of low-energy electrons (30–200 eV) and observation of diffracted electrons as spots on a fluorescent screen.
Electron tomography (ET) is a tomography technique for obtaining detailed 3D structures of sub-cellular, macro-molecular, or materials specimens. Electron tomography is an extension of traditional transmission electron microscopy and uses a transmission electron microscope to collect the data. In the process, a beam of electrons is passed through the sample at incremental degrees of rotation around the center of the target sample. This information is collected and used to assemble a three-dimensional image of the target. For biological applications, the typical resolution of ET systems are in the 5–20 nm range, suitable for examining supra-molecular multi-protein structures, although not the secondary and tertiary structure of an individual protein or polypeptide. Recently, atomic resolution in 3D electron tomography reconstructions has been demonstrated.
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern. It is different from X-ray crystallography which exploits X-ray diffraction to determine the arrangement of atoms in materials, and also has other components such as ways to map from experimental diffraction measurements to the positions of atoms.
Helium atom scattering (HAS) is a surface analysis technique used in materials science. It provides information about the surface structure and lattice dynamics of a material by measuring the diffracted atoms from a monochromatic helium beam incident on the sample.
Electron channelling contrast imaging (ECCI) is a scanning electron microscope (SEM) diffraction technique used in the study of defects in materials. These can be dislocations or stacking faults that are close to the surface of the sample, low angle grain boundaries or atomic steps. Unlike the use of transmission electron microscopy (TEM) for the investigation of dislocations, the ECCI approach has been called a rapid and non-destructive characterisation technique
Convergent beam electron diffraction (CBED) is an electron diffraction technique where a convergent or divergent beam of electrons is used to study materials.
4D scanning transmission electron microscopy is a subset of scanning transmission electron microscopy (STEM) which utilizes a pixelated electron detector to capture a convergent beam electron diffraction (CBED) pattern at each scan location. This technique captures a 2 dimensional reciprocal space image associated with each scan point as the beam rasters across a 2 dimensional region in real space, hence the name 4D STEM. Its development was enabled by evolution in STEM detectors and improvements computational power. The technique has applications in visual diffraction imaging, phase orientation and strain mapping, phase contrast analysis, among others.
Transmission Kikuchi Diffraction (TKD), also sometimes called transmission-electron backscatter diffraction (t-EBSD), is a method for orientation mapping at the nanoscale. It’s used for analysing the microstructures of thin transmission electron microscopy (TEM) specimens in the scanning electron microscope (SEM). This technique has been widely utilised in the characterization of nano-crystalline materials, including oxides, superconductors, and metallic alloys.
Weak beam dark field (WBDF) microscopy is a type of transmission electron microscopy (TEM) dark field imaging technique that allows for the visualization of crystal defects with high resolution and contrast. Specifically, the technique is mainly used to study crystal defects such as dislocations, stacking faults, and interfaces in crystalline materials. WBDF is a valuable tool for studying the microstructure of materials, as it can provide detailed information about the nature and distribution of defects in crystals. These characteristics can have a significant impact on material properties such as strength, ductility, and corrosion resistance.