Aberration-Corrected Transmission Electron Microscopy

Last updated

Aberration-Corrected Transmission Electron Microscopy (AC-TEM) is the general term for using electron microscopes where electro optical components are introduced to reduce the aberrations that would otherwise reduce the resolution of images. Historically electron microscopes had quite severe aberrations, and until about the start of the 21st century the resolution was quite limited, at best able to image the atomic structure of materials so long as the atoms were far enough apart. Theoretical methods of correcting the aberrations existed for some time, but could not be implemented in practice. Around the turn of the century the electron optical components were coupled with computer control of the lenses and their alignment; this was the breakthrough which led to significant improvements both in resolution and the clarity of the images. As of 2024 both correction of optical as well as chromatic aberrations is standard in many commercial electron microscopes. They are extensively used in many different areas of science.

Contents

History

Early Theoretical Work

Scherzer's theorem is a theorem in the field of electron microscopy. It states that there is a limit of resolution for electronic lenses because of unavoidable aberrations.

German physicist Otto Scherzer found in 1936 [1] that the electromagnetic lenses, which are used in electron microscopes to focus the electron beam, entail unavoidable imaging errors. These aberrations are of spherical and chromatic nature, that is, the spherical aberration coefficient Cs and the chromatic aberration coefficient Cc are always positive. [2]

Scherzer solved the system of Laplace equations for electromagnetic potentials assuming the following conditions:

  1. electromagnetic fields are rotationally symmetric,
  2. electromagnetic fields are static,
  3. there are no space charges. [3]

He showed that under these conditions the aberrations that emerge degrade the resolution of an electron microscope up to one hundred times the wavelength of the electron. [4] He concluded that the aberrations cannot be fixed with a combination of rotationally symmetrical lenses. [1]

In his original paper, Scherzer summarized: "Chromatic and spherical aberration are unavoidable errors of the space charge-free electron lens. In principle, distortion (strain and twist) and (all types of) coma can be eliminated. Due to the inevitability of spherical aberration, there is a practical, but not a fundamental, limit to the resolving power of the electron microscope." [1]

The resolution limit provided by Scherzer's theorem can be overcome by breaking one of the above-mentioned three conditions. Giving up rotational symmetry in electronic lenses helps in correcting spherical aberrations. [5] [6] A correction of the chromatic aberration can be achieved with time-dependent, i.e. non-static, electromagnetic fields (for example in particle accelerators). [7]

Scherzer himself experimented with space charges (e.g. with charged foils), dynamic lenses, and combinations of lenses and mirrors to minimize aberrations in electron microscopes. [8]

Prototypes

The benefit of the scanning transmission electron microscope (STEM) and its potentional for high-resolution imaging had been investigated by Albert Crewe. He investigated the need for a brighter electron source in the microscope, positing that cold field emission guns would be feasible. [9] Through this and other iterations, Crewe was able to improve the resolution of the STEM from 30 Ångstroms (Å) down to 2.5 Å. [10] Crewe's work made it possible to visualize individual atoms for the first time. [11]

Crewe filed patents for electron aberration correctors, [12] [13] but could never get functioning prototypes.

In the early efforts to correct aberrations, low voltage electrostatic correctors were explored. These correctors used electrostatic lenses to manipulate the electron beam. The advantage of low voltage systems was their reduced chromatic aberration, as the energy spread of the electrons was lower at reduced voltages. [14] Researchers found that by carefully designing these electrostatic elements, they could correct some of the spherical and chromatic aberrations that plagued early electron microscopes. These early correctors were crucial in understanding the behavior of electron optics and provided a stepping stone toward more sophisticated correction techniques.[ citation needed ]

Phase plate and similar ideas

Phase plates were investigated as a spherical aberration corrector, specifically a programmable phase plate. [15]

First demonstrations

The first demonstration of aberration correction in TEM mode was demonstrated by Harald Rose and Maximilian Haider in 1998 using a hexapole corrector, and in STEM mode by Ondrej Krivanek and Niklas Dellby in 1999 using a quadrupole/octupole corrector. [10] As the electron optic resolution improved, it became apparent that there also needed to be improvements to the mechanical stability of the microscopes to keep pace. Many aberration corrected microscopes heavily employ sound and temperature insulation, usually in an enclosure surrounding the microscope.

Early Commercial Products

Nion

Ondrej Krivanek and Niklas Dellby founded Nion in the late 1990s, [16] initially as a collaboration with IBM. [17] Their first products were correctors of spherical and chromatic aberration correctors for existing STEMs. Later on, they designed an ACTEM from scratch, UltraSTEM 1. [18]

CEOS

The approach to aberration correction used by Rose and Haider formed the basis of the company CEOS. They produced modular correctors which could be incorporated into microscopes produced by other vendors, which led to commercial products from FEI, JEOL, and Hitachi.

TEAM Project

The Transmission Electron Aberration-Corrected Microscope (TEAM) project was a collaborative effort between Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL), Brookhaven National Laboratory, Oak Ridge National Laboratory, and the University of Illinois, Urbana-Chamaign [19] with the technical goal of reaching spatial resolution 0.05 nanometers, smooth sample translation and tilt, while allowing for a variety of in-situ experiments. [20]

The TEAM project resulted in several microscopes, the first was the ACAT at Argonne National Laboratory in Illinois which had the first chromatic aberration corrector, then the TEAM 0.5 and TEAM I at the Molecular Foundry in California, and concluded in 2009. [21] Both the TEAM microscopes are S/TEMs (they can be used in both TEM mode and STEM mode) that correct for both spherical aberration and chromatic aberration. [22] [23] The TEAM microscopes are managed by the National Center for Electron Microscopy, a facility of the Molecular Foundry at LBNL, and ACAT by the Center for Nanoscale Materials at ANL.

Other

Several other aberration correctors have been designed and used in electron microscopes such as one by Takanayagi. [24] Similar correctors have also been used at much lower energies such as for LEEM instruments. [25]

Present State

In their modern state, resolutions of about 0.1 nm are fairly routine in microscopes around the world. This is true for both standard higher-voltage electron microscopes as well as a few ones specially designed to operate at lower electron energies. An important offshoot of the improved optical resolution is a companion improvement in the mechanical stability. Exploiting these improvements, significantly better identification of chemical contents of materials has become possible, as well as their atomic structure. This has had a major impact on our understanding across multiple fields of study.

Applications

There is a significant difference in the usage of AC-TEM across various fields. Despite aberration correction for electron microscopes existing in the case of STEMs, the amount of electrons needed to form useful images is far greater than biological samples can handle before being destroyed by radiation damage. Life science studies still heavily rely on conventional TEMs, which form a full image with their electron beam (similar to a conventional light microscope).

Physical Sciences

AC-TEM has been used extensively in physical sciences, in part due to the imperviousness of samples to radiation damage. This has ranged across chemistry, materials science and physics.

Life Sciences

Aberration correction have yet to be significantly used in the life sciences, due to generally low atomic weight contrast in biological systems and also the increased radiation damage. However, the side benefits such as improved mechanical stability and detectors have significantly improved data collection quality.

Related Research Articles

<span class="mw-page-title-main">Electron microscope</span> Type of microscope with electrons as a source of illumination

An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:

<span class="mw-page-title-main">Microscope</span> Scientific instrument

A microscope is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope.

<span class="mw-page-title-main">Transmission electron microscopy</span> Imaging and diffraction using electrons that pass through samples

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

Photoemission electron microscopy is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast. The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

<span class="mw-page-title-main">Transmission Electron Aberration-corrected Microscope Project</span> Aberration-correction microscopes in the Lawrence Berkeley National Laboratory

The Transmission Electron Aberration-Corrected Microscope (TEAM) Project is a collaborative research project between four US laboratories and two companies. The project's main activity is design and application of a transmission electron microscope (TEM) with a spatial resolution below 0.05 nanometers, which is roughly half the size of an atom of hydrogen.

<span class="mw-page-title-main">Scanning transmission electron microscopy</span> Scanning microscopy using thin samples and transmitted electrons

A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data.

<span class="mw-page-title-main">Annular dark-field imaging</span> Electron microscopy technique

Annular dark-field imaging is a method of mapping samples in a scanning transmission electron microscope (STEM). These images are formed by collecting scattered electrons with an annular dark-field detector.

<span class="mw-page-title-main">High-resolution transmission electron microscopy</span>

High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp2-bonded carbon. While this term is often also used to refer to high resolution scanning transmission electron microscopy, mostly in high angle annular dark field mode, this article describes mainly the imaging of an object by recording the two-dimensional spatial wave amplitude distribution in the image plane, similar to a "classic" light microscope. For disambiguation, the technique is also often referred to as phase contrast transmission electron microscopy, although this term is less appropriate. At present, the highest point resolution realised in high resolution transmission electron microscopy is around 0.5 ångströms (0.050 nm). At these small scales, individual atoms of a crystal and defects can be resolved. For 3-dimensional crystals, it is necessary to combine several views, taken from different angles, into a 3D map. This technique is called electron tomography.

<span class="mw-page-title-main">Otto Scherzer</span> German physicist

Otto Scherzer was a German theoretical physicist who made contributions to electron microscopy.

<span class="mw-page-title-main">JEOL</span> Japanese manufacturer of scientific instruments

JEOL, Ltd. is a major developer and manufacturer of electron microscopes and other scientific instruments, industrial equipment and medical equipment.

<span class="mw-page-title-main">Contrast transfer function</span>

The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.

A Low-voltage electron microscope (LVEM) is an electron microscope which operates at accelerating voltages of a few kiloelectronvolts (keV) or less. Traditional electron microscopes use accelerating voltages in the range of 10-1000 keV.

The Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) is an institute located on the campus of Forschungszentrum Jülich belonging to the Helmholtz Association of German Research Centres. It comprises three divisions: ER-C-1Physics of Nanoscale systems”, ER-C-2Materials Science and Technology” and ER-C-3Structural Biology”.

<span class="mw-page-title-main">Crystallographic image processing</span>

Crystallographic image processing (CIP) is traditionally understood as being a set of key steps in the determination of the atomic structure of crystalline matter from high-resolution electron microscopy (HREM) images obtained in a transmission electron microscope (TEM) that is run in the parallel illumination mode. The term was created in the research group of Sven Hovmöller at Stockholm University during the early 1980s and became rapidly a label for the "3D crystal structure from 2D transmission/projection images" approach. Since the late 1990s, analogous and complementary image processing techniques that are directed towards the achieving of goals with are either complementary or entirely beyond the scope of the original inception of CIP have been developed independently by members of the computational symmetry/geometry, scanning transmission electron microscopy, scanning probe microscopy communities, and applied crystallography communities.

<span class="mw-page-title-main">Transmission electron microscopy DNA sequencing</span> Single-molecule sequencing technology

Transmission electron microscopy DNA sequencing is a single-molecule sequencing technology that uses transmission electron microscopy techniques. The method was conceived and developed in the 1960s and 70s, but lost favor when the extent of damage to the sample was recognized.

<span class="mw-page-title-main">Ondrej Krivanek</span> British physicist

Ondrej L. Krivanek is a Czech/British physicist resident in the United States, and a leading developer of electron-optical instrumentation. He won the Kavli Prize for Nanoscience in 2020 for his substantial innovations in atomic resolution electron microscopy.

A stigmator is a component of electron microscopes that reduces astigmatism of the beam by imposing a weak electric or magnetic quadrupole field on the electron beam.

Scherzer's theorem is a theorem in the field of electron microscopy. It states that there is a limit of resolution for electronic lenses because of unavoidable aberrations.

Peter David Nellist, is a British physicist and materials scientist, currently a professor in the Department of Materials at the University of Oxford. He is noted for pioneering new techniques in high-resolution electron microscopy.

<span class="mw-page-title-main">Nion (company)</span> American electron microscope manufacturer

Nion is a manufacturer of scanning transmission electron microscopes (STEMs) based in Kirkland, Washington.

References

  1. 1 2 3 Scherzer, Otto (September 1936). "Über einige Fehler von Elektronenlinsen". Zeitschrift für Physik. 101 (9–10): 593–603. Bibcode:1936ZPhy..101..593S. doi:10.1007/BF01349606. S2CID   120073021.
  2. Schönhense, G. (2006). "Time-Resolved Photoemission Electron Microscopy". Advances in Imaging and Electron Physics. 142: 159–323. doi:10.1016/S1076-5670(05)42003-0. ISBN   9780120147847.
  3. Rose, H. (2005). "Aberration Correction in Electron Microscopy" (PDF). Proceedings of the 2005 Particle Accelerator Conference. pp. 44–48. doi:10.1109/PAC.2005.1590354. ISBN   0-7803-8859-3. S2CID   122693745 . Retrieved 5 April 2020.
  4. "Otto Scherzer. The father of aberration correction" (PDF). Microscopy Society of America. Retrieved 5 April 2020.
  5. Orloff, Jon (June 1997). Handbook of Charged Particle Optics. CRC Press. p. 234.
  6. Ernst, Frank (January 2003). High-Resolution Imaging and Spectrometry of Materials. Springer Science & Business Media. p. 237.
  7. Liao, Yougui. "Correction of Chromatic Aberration in Charged Particle Accelerators with Time-varying Fields". Practical Electron Microscopy and Database. Retrieved 5 April 2020.
  8. Scherzer, Otto (1947). "Sphärische und chromatische Korrektur von Elektronenlinsen". Optik. 2: 114–132.
  9. Crewe, Albert V. (1966-11-11). "Scanning Electron Microscopes: Is High Resolution Possible?: Use of a field-emission electron source may make it possible to overcome existing limitations on resolution". Science. 154 (3750): 729–738. doi:10.1126/science.154.3750.729. ISSN   0036-8075.
  10. 1 2 Pennycook, S. J. (2012-12-01). "Seeing the atoms more clearly: STEM imaging from the Crewe era to today". Ultramicroscopy. Albert Victor Crewe Memorial Issue. 123: 28–37. doi:10.1016/j.ultramic.2012.05.005. ISSN   0304-3991.
  11. Crewe, A. V.; Wall, J.; Langmore, J. (1970-06-12). "Visibility of Single Atoms". Science. 168 (3937): 1338–1340. doi:10.1126/science.168.3937.1338. ISSN   0036-8075.
  12. US4303864A,Crewe, Albert V.&Kopf, David A.,"Sextupole system for the correction of spherical aberration",issued 1981-12-01
  13. US4389571A,Crewe, Albert V.,"Multiple sextupole system for the correction of third and higher order aberration",issued 1983-06-21
  14. Rose, Harald (1990-06-01). "Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope". Optik . 85 (1).
  15. Ribet, Stephanie M; Zeltmann, Steven E; Bustillo, Karen C; Dhall, Rohan; Denes, Peter; Minor, Andrew M; dos Reis, Roberto; Dravid, Vinayak P; Ophus, Colin (2023-12-21). "Design of Electrostatic Aberration Correctors for Scanning Transmission Electron Microscopy". Microscopy and Microanalysis. 29 (6): 1950–1960. arXiv: 2303.09693 . doi:10.1093/micmic/ozad111. ISSN   1431-9276.
  16. Batson, P. E.; Dellby, N.; Krivanek, O. L. (2002-08-08). "Sub-ångstrom resolution using aberration corrected electron optics". Nature. 418 (6898): 617–620. doi:10.1038/nature00972. ISSN   0028-0836.
  17. Pool, Rebecca (2022-11-21). "Nion: The company that transformed microscopy". Wiley Analytical Science. Archived from the original on 2024-05-24. Retrieved 2024-05-24.
  18. "Kirkland microscopes can examine matter one atom at a time". The Seattle Times. 2010-09-05. Archived from the original on 2016-03-25. Retrieved 2024-05-25.
  19. "The TEAM Project: When/Where". web.archive.org. Retrieved 2024-05-27.
  20. "The TEAM Project: What is the TEAM microscope?". web.archive.org. 2011-02-11. Retrieved 2024-05-27.
  21. Dahmen, Ulrich; Erni, Rolf; Radmilovic, Velimir; Ksielowski, Christian; Rossell, Marta-Dacil; Denes, Peter (2009-09-28). "Background, status and future of the Transmission Electron Aberration-corrected Microscope project". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 367 (1903): 3795–3808. doi:10.1098/rsta.2009.0094. ISSN   1364-503X.
  22. "TEAM 0.5". foundry.lbl.gov. Archived from the original on 2024-05-12. Retrieved 2024-05-27.
  23. "TEAM I". foundry.lbl.gov. Archived from the original on 2024-03-10. Retrieved 2024-05-27.
  24. Sawada, H.; Hosokawa, F.; Kaneyama, T.; Tomita, T.; Kondo, Y.; Tanaka, T.; Oshima, Y.; Tanishiro, Y.; Yamamoto, N. (2008), Luysberg, Martina; Tillmann, Karsten; Weirich, Thomas (eds.), "Performance of R005 Microscope and Aberration Correction System", EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 47–48, doi:10.1007/978-3-540-85156-1_24, ISBN   978-3-540-85154-7 , retrieved 2024-09-01
  25. Tromp, R.M.; Hannon, J.B.; Ellis, A.W.; Wan, W.; Berghaus, A.; Schaff, O. (June 2010). "A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design". Ultramicroscopy. 110 (7): 852–861. doi:10.1016/j.ultramic.2010.03.005.