Wigner effect

Last updated

The Wigner effect (named for its discoverer, Eugene Wigner), [1] also known as the discomposition effect or Wigner's disease, [2] is the displacement of atoms in a solid caused by neutron radiation.

Contents

Any solid can display the Wigner effect. The effect is of most concern in neutron moderators, such as graphite, intended to reduce the speed of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235.

Cause

To cause the Wigner effect, neutrons that collide with the atoms in a crystal structure must have enough energy to displace them from the lattice. This amount (threshold displacement energy) is approximately 25 eV. A neutron's energy can vary widely, but it is not uncommon to have energies up to and exceeding 10 MeV (10,000,000 eV) in the centre of a nuclear reactor. A neutron with a significant amount of energy will create a displacement cascade in a matrix via elastic collisions.

For example, a 1 MeV neutron striking graphite will create 900 displacements. Not all displacements will create defects, because some of the struck atoms will find and fill the vacancies that were either small pre-existing voids or vacancies newly formed by the other struck atoms.

Frenkel defect

The atoms that do not find a vacancy come to rest in non-ideal locations; that is, not along the symmetrical lines of the lattice. These interstitial atoms (or simply "interstitials") and their associated vacancies are a Frenkel defect. Because these atoms are not in the ideal location, they have a Wigner energy associated with them, much as a ball at the top of a hill has gravitational potential energy.

When a large number of interstitials have accumulated, they risk releasing all of their energy suddenly, creating a rapid, great increase in temperature. Sudden, unplanned increases in temperature can present a large risk for certain types of nuclear reactors with low operating temperatures. One such release was the indirect cause of the Windscale fire. Accumulation of energy in irradiated graphite has been recorded as high as 2.7 kJ/g, but is typically much lower than this. [3]

Not linked to Chernobyl disaster

Despite some reports, [4] Wigner energy buildup had nothing to do with the cause of the Chernobyl disaster: this reactor, like all contemporary power reactors, operated at a high enough temperature to allow the displaced graphite structure to realign itself before any potential energy could be stored. [5] Wigner energy may have played some part following the prompt critical neutron spike, when the accident entered the graphite fire phase of events.

Dissipation of Wigner energy

A buildup of Wigner energy can be relieved by heating the material. This process is known as annealing. In graphite this occurs at 250 °C (482 °F). [6]

Intimate Frenkel pairs

In 2003, it was postulated that Wigner energy can be stored by the formation of metastable defect structures in graphite. Notably, the large energy release observed at 200–250 °C has been described in terms of a metastable interstitial-vacancy pair. [7] The interstitial atom becomes trapped on the lip of the vacancy, and there is a barrier for it to recombine to give perfect graphite.

Citations

  1. Wigner, E. P. (1946). "Theoretical Physics in the Metallurgical Laboratory of Chicago". Journal of Applied Physics. 17 (11): 857–863. Bibcode:1946JAP....17..857W. doi:10.1063/1.1707653.
  2. Rhodes, Richard (1 August 1995). Dark Sun: The Making of the Hydrogen Bomb. Simon & Schuster. ISBN   978-0-68-480400-2. LCCN   95011070. OCLC   456652278. OL   7720934M. Wikidata   Q105755363 via Internet Archive.
  3. International Atomic Energy Agency (September 2006). "Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors" (PDF).
  4. V.P. Bond; E.P. Cronkite, eds. (August 8–9, 1986). Workshop on Short-Term Health Effects of Reactor Accidents: Chernobyl (PDF). Workshop on short-term health effects of reactor accidents: Chernobyl. Brookhaven National Laboratory, Upton, NY, USA: United States Department of Energy.
  5. Sarah Kramer (26 Apr 2016). "Here's why a Chernobyl-style nuclear meltdown can't happen in the United States". Business Insider. Retrieved 6 Jan 2019.
  6. European Nuclear Society. "Wigner Energy". Archived from the original on 16 March 2013. Retrieved 6 Jan 2019.
  7. Ewels, C. P.; Telling, R. H.; El-Barbary, A. A.; Heggie, M. I.; Briddon, P. R. (2003). "Metastable Frenkel Pair Defect in Graphite: Source of Wigner Energy?" (PDF). Physical Review Letters. 91 (2): 025505. Bibcode:2003PhRvL..91b5505E. doi:10.1103/PhysRevLett.91.025505. PMID   12906489.

General references

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Pebble-bed reactor</span> Type of very-high-temperature reactor

The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative.

<span class="mw-page-title-main">Neutron moderator</span> Substance that slows down particles with no electric charge

In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.

<span class="mw-page-title-main">RBMK</span> Type of Soviet nuclear power reactor

The RBMK is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union. The name refers to its design where, instead of a large steel pressure vessel surrounding the entire core, the core is surrounded by a cylindrical annular steel tank inside a concrete vault and each fuel assembly is enclosed in an individual 8 cm (inner) diameter pipe. The channels also contain the coolant, and are surrounded by graphite.

<span class="mw-page-title-main">Neutron radiation</span> Ionizing radiation that presents as free neutrons

Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an electron antineutrino. Free neutrons have a mean lifetime of 887 seconds.

Neutron-induced swelling is the increase of volume and decrease of density of materials subjected to intense neutron radiation. Neutrons impacting the material's lattice rearrange its atoms, causing buildup of dislocations, voids, and Wigner energy. Together with the resulting strength reduction and embrittlement, it is a major concern for materials for nuclear reactors.

<span class="mw-page-title-main">Reactor pressure vessel</span> Nuclear power plant component

A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.

In crystallography, a Frenkel defect is a type of point defect in crystalline solids, named after its discoverer Yakov Frenkel. The defect forms when an atom or smaller ion leaves its place in the lattice, creating a vacancy and becomes an interstitial by lodging in a nearby location. In elemental systems, they are primarily generated during particle irradiation, as their formation enthalpy is typically much higher than for other point defects, such as vacancies, and thus their equilibrium concentration according to the Boltzmann distribution is below the detection limit. In ionic crystals, which usually possess low coordination number or a considerable disparity in the sizes of the ions, this defect can be generated also spontaneously, where the smaller ion is dislocated. Similar to a Schottky defect the Frenkel defect is a stoichiometric defect. In ionic compounds, the vacancy and interstitial defect involved are oppositely charged and one might expect them to be located close to each other due to electrostatic attraction. However, this is not likely the case in real material due to smaller entropy of such a coupled defect, or because the two defects might collapse into each other. Also, because such coupled complex defects are stoichiometric, their concentration will be independent of chemical conditions.

Kröger–Vink notation is a set of conventions that are used to describe electric charges and lattice positions of point defect species in crystals. It is primarily used for ionic crystals and is particularly useful for describing various defect reactions. It was proposed by F. A. Kröger and H. J. Vink.

<span class="mw-page-title-main">Nuclear graphite</span> Graphite used as a reflector or moderator within a nuclear reactor

Nuclear graphite is any grade of graphite, usually synthetic graphite, manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reactors, due to its extreme purity and ability to withstand extremely high temperature.

<span class="mw-page-title-main">Graphite-moderated reactor</span> Type of nuclear reactor

A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel.

<span class="mw-page-title-main">Interstitial defect</span> Crystallographic defect; atoms located in the gaps between atoms in the lattice

In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material.

Radiation damage is the effect of ionizing radiation on physical objects including non-living structural materials. It can be either detrimental or beneficial for materials.

<span class="mw-page-title-main">Collision cascade</span> Series of collisions between nearby atoms, initiated by a single energetic atom

In condensed-matter physics, a collision cascade is a set of nearby adjacent energetic collisions of atoms induced by an energetic particle in a solid or liquid.

In materials science, the threshold displacement energy is the minimum kinetic energy that an atom in a solid needs to be permanently displaced from its site in the lattice to a defect position. It is also known as "displacement threshold energy" or just "displacement energy". In a crystal, a separate threshold displacement energy exists for each crystallographic direction. Then one should distinguish between the minimum and average over all lattice directions' threshold displacement energies. In amorphous solids, it may be possible to define an effective displacement energy to describe some other average quantity of interest. Threshold displacement energies in typical solids are of the order of 10-50 eV.

Radiation materials science is a subfield of materials science which studies the interaction of radiation with matter: a broad subject covering many forms of irradiation and of matter.

In condensed-matter physics, a primary knock-on atom (PKA) is an atom that is displaced from its lattice site by irradiation; it is, by definition, the first atom that an incident particle encounters in the target. After it is displaced from its initial lattice site, the PKA can induce the subsequent lattice site displacements of other atoms if it possesses sufficient energy, or come to rest in the lattice at an interstitial site if it does not.

Neutron embrittlement, sometimes more broadly radiation embrittlement, is the embrittlement of various materials due to the action of neutrons. This is primarily seen in nuclear reactors, where the release of high-energy neutrons causes the long-term degradation of the reactor materials. The embrittlement is caused by the microscopic movement of atoms that are hit by the neutrons; this same action also gives rise to neutron-induced swelling causing materials to grow in size, and the Wigner effect causing energy buildup in certain materials that can lead to sudden releases of energy.

<span class="mw-page-title-main">Windscale Piles</span> Former air-cooled graphite-moderated nuclear reactors

The Windscale Piles were two air-cooled graphite-moderated nuclear reactors on the Windscale nuclear site in Cumberland on the north-west coast of England. The two reactors, referred to at the time as "piles", were built as part of the British post-war atomic bomb project and produced weapons-grade plutonium for use in nuclear weapons.