The Wigner effect (named for its discoverer, Eugene Wigner), [1] also known as the discomposition effect or Wigner's disease, [2] is the displacement of atoms in a solid caused by neutron radiation.
Any solid can display the Wigner effect. The effect is of most concern in neutron moderators, such as graphite, intended to reduce the speed of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235.
To cause the Wigner effect, neutrons that collide with the atoms in a crystal structure must have enough energy to displace them from the lattice. This amount (threshold displacement energy) is approximately 25 eV. A neutron's energy can vary widely, but it is not uncommon to have energies up to and exceeding 10 MeV (10,000,000 eV) in the centre of a nuclear reactor. A neutron with a significant amount of energy will create a displacement cascade in a matrix via elastic collisions.
For example, a 1 MeV neutron striking graphite will create 900 displacements. Not all displacements will create defects, because some of the struck atoms will find and fill the vacancies that were either small pre-existing voids or vacancies newly formed by the other struck atoms.
The atoms that do not find a vacancy come to rest in non-ideal locations; that is, not along the symmetrical lines of the lattice. These interstitial atoms (or simply "interstitials") and their associated vacancies are a Frenkel defect. Because these atoms are not in the ideal location, they have a Wigner energy associated with them, much as a ball at the top of a hill has gravitational potential energy.
When a large number of interstitials have accumulated, they risk releasing all of their energy suddenly, creating a rapid, great increase in temperature. Sudden, unplanned increases in temperature can present a large risk for certain types of nuclear reactors with low operating temperatures. One such release was the indirect cause of the Windscale fire. Accumulation of energy in irradiated graphite has been recorded as high as 2.7 kJ/g--enough to raise the temperature by thousands of degrees--but is typically much lower than this. [3]
Despite some reports, [4] Wigner energy buildup had nothing to do with the cause of the Chernobyl disaster: this reactor, like all contemporary power reactors, operated at a high enough temperature to allow the displaced graphite structure to realign itself before any potential energy could be stored. [5] Wigner energy may have played some part following the prompt critical neutron spike, when the accident entered the graphite fire phase of events.
A buildup of Wigner energy can be relieved by heating the material. This process is known as annealing. In graphite this occurs at 250 °C (482 °F). [6]
In 2003, it was postulated that Wigner energy can be stored by the formation of metastable defect structures in graphite. Notably, the large energy release observed at 200–250 °C has been described in terms of a metastable interstitial-vacancy pair. [7] The interstitial atom becomes trapped on the lip of the vacancy, and there is a barrier for it to recombine to give perfect graphite.
A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell parameters in crystals, exhibit a periodic crystal structure, but this is usually imperfect. Several types of defects are often characterized: point defects, line defects, planar defects, bulk defects. Topological homotopy establishes a mathematical method of characterization.
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants.
The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative.
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.
The RBMK is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union. It is somewhat like a boiling water reactor as water boils in the pressure tubes. It is one of two power reactor types to enter serial production in the Soviet Union during the 1970s, the other being the VVER reactor. The name refers to its design where instead of a large steel pressure vessel surrounding the entire core, the core is surrounded by a cylindrical annular steel tank inside a concrete vault and each fuel assembly is enclosed in an individual 8 cm (inner) diameter pipe. The channels also contain the coolant, and are surrounded by graphite.
Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an electron antineutrino. Free neutrons have a mean lifetime of 887 seconds.
Silver bromide (AgBr), a soft, pale-yellow, water-insoluble salt well known for its unusual sensitivity to light. This property has allowed silver halides to become the basis of modern photographic materials. AgBr is widely used in photographic films and is believed by some to have been used for making the Shroud of Turin. The salt can be found naturally as the mineral bromargyrite (bromyrite).
A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.
In crystallography, a Frenkel defect is a type of point defect in crystalline solids, named after its discoverer Yakov Frenkel. The defect forms when an atom or smaller ion leaves its place in the structure, creating a vacancy and becomes an interstitial by lodging in a nearby location. In elemental systems, they are primarily generated during particle irradiation, as their formation enthalpy is typically much higher than for other point defects, such as vacancies, and thus their equilibrium concentration according to the Boltzmann distribution is below the detection limit. In ionic crystals, which usually possess low coordination number or a considerable disparity in the sizes of the ions, this defect can be generated also spontaneously, where the smaller ion is dislocated. Similar to a Schottky defect the Frenkel defect is a stoichiometric defect. In ionic compounds, the vacancy and interstitial defect involved are oppositely charged and one might expect them to be located close to each other due to electrostatic attraction. However, this is not likely the case in real material due to smaller entropy of such a coupled defect, or because the two defects might collapse into each other. Also, because such coupled complex defects are stoichiometric, their concentration will be independent of chemical conditions.
A Schottky defect is an excitation of the site occupations in a crystal lattice leading to point defects named after Walter H. Schottky. In ionic crystals, this defect forms when oppositely charged ions leave their lattice sites and become incorporated for instance at the surface, creating oppositely charged vacancies. These vacancies are formed in stoichiometric units, to maintain an overall neutral charge in the ionic solid.
Nuclear graphite is any grade of graphite, usually synthetic graphite, manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reactors because of its extreme purity and ability to withstand extremely high temperatures.
In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material.
Radiation damage is the effect of ionizing radiation on physical objects including non-living structural materials. It can be either detrimental or beneficial for materials.
In condensed-matter physics, a collision cascade is a set of nearby adjacent energetic collisions of atoms induced by an energetic particle in a solid or liquid.
In materials science, the threshold displacement energy is the minimum kinetic energy that an atom in a solid needs to be permanently displaced from its site in the lattice to a defect position. It is also known as "displacement threshold energy" or just "displacement energy". In a crystal, a separate threshold displacement energy exists for each crystallographic direction. Then one should distinguish between the minimum and average over all lattice directions' threshold displacement energies. In amorphous solids, it may be possible to define an effective displacement energy to describe some other average quantity of interest. Threshold displacement energies in typical solids are of the order of 10-50 eV.
Radiation materials science is a subfield of materials science which studies the interaction of radiation with matter: a broad subject covering many forms of irradiation and of matter.
In condensed-matter physics, a primary knock-on atom (PKA) is an atom that is displaced from its lattice site by irradiation; it is, by definition, the first atom that an incident particle encounters in the target. After it is displaced from its initial lattice site, the PKA can induce the subsequent lattice site displacements of other atoms if it possesses sufficient energy, or come to rest in the lattice at an interstitial site if it does not.
Neutron embrittlement, sometimes more broadly radiation embrittlement, is the embrittlement of various materials due to the action of neutrons. This is primarily seen in nuclear reactors, where the release of high-energy neutrons causes the long-term degradation of the reactor materials. The embrittlement is caused by the microscopic movement of atoms that are hit by the neutrons; this same action also gives rise to neutron-induced swelling causing materials to grow in size, and the Wigner effect causing energy buildup in certain materials that can lead to sudden releases of energy.
The Windscale Piles were two air-cooled graphite-moderated nuclear reactors on the Windscale nuclear site in Cumberland on the north-west coast of England. The two reactors, referred to at the time as "piles", were built as part of the British post-war atomic bomb project and produced weapons-grade plutonium for use in nuclear weapons.
The Chernobyl disaster was a catastrophic nuclear disaster that occurred in the early hours of 26 April 1986, at the Chernobyl Nuclear Power Plant in Soviet Ukraine. The accident occurred when Reactor Number 4 exploded and destroyed most of the reactor building, spreading debris and radioactive material across the surrounding area, and over the following days and weeks, most of mainland Europe was contaminated with radionuclides that emitted dangerous amounts of ionizing radiation. To investigate the causes of the accident, the International Atomic Energy Agency (IAEA) used its organization, the International Nuclear Safety Advisory Group (INSAG).