Nuclear weapon yield

Last updated

Log-log plot comparing the yield (in kilotonnes) and mass (in kilograms) of various nuclear weapons developed by the United States. US nuclear weapons yield-to-weight comparison.svg
Log–log plot comparing the yield (in kilotonnes) and mass (in kilograms) of various nuclear weapons developed by the United States.

The explosive yield of a nuclear weapon is the amount of energy released such as blast, thermal, and nuclear radiation, when that particular nuclear weapon is detonated, usually expressed as a TNT equivalent (the standardized equivalent mass of trinitrotoluene which, if detonated, would produce the same energy discharge), either in kilotonnes (kt—thousands of tonnes of TNT), in megatonnes (Mt—millions of tonnes of TNT), or sometimes in terajoules (TJ). An explosive yield of one terajoule is equal to 0.239 kilotonnes of TNT. Because the accuracy of any measurement of the energy released by TNT has always been problematic, the conventional definition is that one kilotonne of TNT is held simply to be equivalent to 1012 calories.

Contents

The yield-to-weight ratio is the amount of weapon yield compared to the mass of the weapon. The practical maximum yield-to-weight ratio for fusion weapons (thermonuclear weapons) has been estimated to six megatonnes of TNT per tonne of bomb mass (25 TJ/kg). Yields of 5.2 megatonnes/tonne and higher have been reported for large weapons constructed for single-warhead use in the early 1960s. [1] Since then, the smaller warheads needed to achieve the increased net damage efficiency (bomb damage/bomb mass) of multiple warhead systems have resulted in increases in the yield/mass ratio for single modern warheads.

Examples of nuclear weapon yields

In order of increasing yield (most yield figures are approximate):

BombYieldNotesWeight of nuclear material
kt TNTTJ
Davy Crockett 0.020.084 Variable yield tactical nuclear weapon—mass only 23 kg (51 lb), lightest ever deployed by the United States (same warhead as Special Atomic Demolition Munition and GAR-11 Nuclear Falcon missile).
AIR-2 Genie 1.56.3An unguided air-to-air rocket armed with a W25 nuclear warhead developed to intercept bomber squadrons.Total weight of nuclear material and bomb was 98.8 - 100.2 kg
Hiroshima's "Little Boy" gravity bomb 13–1854–75Gun type uranium-235 fission bomb (the first of the two nuclear weapons that have been used in warfare).64 kg of Uranium-235, about 1.38% of the uranium fissioned
Nagasaki's "Fat Man" gravity bomb19–2379–96Implosion type plutonium-239 fission bomb (the second of the two nuclear weapons used in warfare).6.2 kg of Plutonium-239, about 1 kg fissioned
W76 warhead100420Twelve of these may be in a MIRVed Trident II missile; treaty limited to eight.
W87 warhead3001,300Ten of these were in a MIRVed LGM-118A Peacekeeper.
W88 warhead4751,990Twelve of these may be in a Trident II missile; treaty limited to eight.
Ivy King device5002,100Most powerful US pure fission bomb, [2] 60 kg uranium, implosion type. Never deployed.60 kg of Highly enriched uranium (HEU)
Orange Herald Small 8003,300Most powerful tested UK boosted fission missile warhead.117 kg of Uranium-235
B83 nuclear bomb 1,2005,000Variable yield weapon, most powerful US weapon in active service.
B53 nuclear bomb 9,00038,000Was the most powerful US bomb in active service until 1997. 50 were retained as part of the "Hedge" portion of the Enduring Stockpile until completely dismantled in 2011. [3] The Mod 11 variant of the B61 replaced the B53 in the bunker busting role. The W53 warhead from the weapon was used on the Titan II Missile until the system was decommissioned in 1987.
Castle Bravo device15,00063,000Most powerful US test. [4] Never deployed.400 kg of Lithium-6 deuteride
EC17/Mk-17, the EC24/Mk-24, and the B41  (Mk-41)25,000100,000Most powerful US weapons ever: 25 megatonnes of TNT (100 PJ); the Mk-17 was also the largest by area square footage and mass cubic footage: about 20 short tons (18,000 kg). The Mk-41 or B41 had a mass of 4800 kg and yield of 25 Mt; this equates to being the highest yield-to-weight weapon ever produced. All were gravity bombs carried by the B-36 bomber (retired by 1957).
The entire Operation Castle nuclear test series48,200202,000The highest-yielding test series conducted by the US.
Tsar Bomba device50,000210,000USSR, most powerful nuclear weapon ever detonated, yield of 50 megatonnes, (50 million tonnes of TNT). In its "final" form (i.e. with a depleted uranium tamper instead of one made of lead) it would have been 100 megatonnes.
All nuclear testing as of 1996510,3002,135,000Total energy expended during all nuclear testing. [5]
Total energy produced by the sun in its stellar lifetime1.353*10^325.66*10^32 [6]
Comparative fireball radii for a selection of nuclear weapons.
Contrary to the image, which may depict the initial fireball radius, the maximum average fireball radius of Castle Bravo, a 15-megatonne yield surface burst, is 3.3 to 3.7 km (2.1 to 2.3 mi), and not the 1.42 km displayed in the image. Similarly the maximum average fireball radius of a 21-kilotonne low altitude airburst, which is the modern estimate for the Fat Man, is .21 to .24 km (0.13 to 0.15 mi), and not the 0.1 km of the image. Comparative nuclear fireball sizes.svg
Comparative fireball radii for a selection of nuclear weapons. Contrary to the image, which may depict the initial fireball radius, the maximum average fireball radius of Castle Bravo, a 15-megatonne yield surface burst, is 3.3 to 3.7 km (2.1 to 2.3 mi), and not the 1.42 km displayed in the image. Similarly the maximum average fireball radius of a 21-kilotonne low altitude airburst, which is the modern estimate for the Fat Man, is .21 to .24 km (0.13 to 0.15 mi), and not the 0.1 km of the image.

In comparison, the blast yield of the GBU-43 Massive Ordnance Air Blast bomb is 0.011 kt, and that of the Oklahoma City bombing, using a truck-based fertilizer bomb, was 0.002 kt. The estimated strength of the explosion at the Port of Beirut is 0.3-0.5 kt. [10] Most artificial non-nuclear explosions are considerably smaller than even what are considered to be very small nuclear weapons.

Yield limits

The yield-to-mass ratio is the amount of weapon yield compared to the mass of the weapon. According to nuclear-weapons designer Ted Taylor, the practical maximum yield-to-mass ratio for fusion weapons is about 6 megatonnes of TNT per tonne (25 TJ/kg). [11] [ self-published source? ] The "Taylor limit" is not derived from first principles, and weapons with yields as high as 9.5 megatonnes per tonne have been theorized. [12] The highest achieved values are somewhat lower, and the value tends to be lower for smaller, lighter weapons, of the sort that are emphasized in today's arsenals, designed for efficient MIRV use or delivery by cruise missile systems.

Large single warheads are seldom a part of today's arsenals, since smaller MIRV warheads, spread out over a pancake-shaped destructive area, are far more destructive for a given total yield, or unit of payload mass. This effect results from the fact that destructive power of a single warhead on land scales approximately only as the cube root of its yield, due to blast "wasted" over a roughly hemispherical blast volume, while the strategic target is distributed over a circular land area with limited height and depth. This effect more than makes up for the lessened yield/mass efficiency encountered if ballistic missile warheads are individually scaled down from the maximal size that could be carried by a single-warhead missile.

Yield Efficiency

The efficiency of an atomic bomb is the ratio of the actual yield to the theoretical maximum yield of the atomic bomb. Not all atomic bombs possess the same yield efficiency as each individual bombs design plays a large role in how efficient it can be. In order to maximize yield efficiency one must make sure to assemble the critical mass correctly, as well as implementing instruments such as tampers or initiators in the design. A tamper is typically made of uranium and it holds the core together using its inertia. It is used to prevent the core from separating too soon to generate maximum fission, so as not to cause a "fizzle". The initiator is a source of neutrons either inside of the core, or on the outside of the bomb, and in this case it shoots neutrons at the core at the moment of detonation. It is essentially kick starting the reaction so the maximum fission reactions can occur to maximize yield. [14]

Milestone nuclear explosions

The following list is of milestone nuclear explosions. In addition to the atomic bombings of Hiroshima and Nagasaki, the first nuclear test of a given weapon type for a country is included, as well as tests that were otherwise notable (such as the largest test ever). All yields (explosive power) are given in their estimated energy equivalents in kilotons of TNT (see TNT equivalent). Putative tests (like Vela incident) have not been included.

DateName
Yield (kt)
CountrySignificance
July 16, 1945 Trinity 18–20 United States First fission-device test, first plutonium implosion detonation.
August 6, 1945 Little Boy 12–18 United States Bombing of Hiroshima, Japan, first detonation of a uranium gun-type device, first use of a nuclear device in combat.
August 9, 1945 Fat Man 18–23 United States Bombing of Nagasaki, Japan, second detonation of a plutonium implosion device (the first being the Trinity Test), second and last use of a nuclear device in combat.
August 29, 1949 RDS-1 22 Soviet Union First fission-weapon test by the Soviet Union.
May 8, 1951 George 225 United States First boosted nuclear weapon test, first weapon test to employ fusion in any measure.
October 3, 1952 Hurricane 25 United Kingdom First fission weapon test by the United Kingdom.
November 1, 1952 Ivy Mike 10,400 United States First "staged" thermonuclear weapon, with cryogenic fusion fuel, primarily a test device and not weaponized.
(1952-11-16)November 16, 1952 Ivy King 500 United States Largest pure-fission weapon ever tested.
August 12, 1953 RDS-6s 400 Soviet Union First fusion-weapon test by the Soviet Union (not "staged").
March 1, 1954 Castle Bravo 15,000 United States First "staged" thermonuclear weapon using dry fusion fuel. A serious nuclear fallout accident occurred. Largest nuclear detonation conducted by United States.
November 22, 1955 RDS-37 1,600 Soviet Union First "staged" thermonuclear weapon test by the Soviet Union (deployable).
May 31, 1957 Orange Herald 720 United Kingdom Largest boosted fission weapon ever tested. Intended as a fallback "in megaton range" in case British thermonuclear development failed.
November 8, 1957 Grapple X 1,800 United Kingdom First (successful) "staged" thermonuclear weapon test by the United Kingdom
February 13, 1960 Gerboise Bleue 70 France First fission weapon test by France.
October 31, 1961 Tsar Bomba 50,000 Soviet Union Largest thermonuclear weapon ever tested—scaled down from its initial 100 Mt design by 50%.
October 16, 1964 596 22 China First fission-weapon test by the People's Republic of China.
June 17, 1967 Test No. 6 3,300 China First "staged" thermonuclear weapon test by the People's Republic of China.
August 24, 1968 Canopus 2,600 France First "staged" thermonuclear weapon test by France
May 18, 1974 Smiling Buddha 12 India First fission nuclear explosive test by India.
May 11, 1998 Pokhran-II 45–50 India First potential fusion-boosted weapon test by India; first deployable fission weapon test by India.
May 28, 1998 Chagai-I 40 Pakistan First fission weapon (boosted) test by Pakistan [15]
October 9, 2006 2006 nuclear test under 1 North Korea First fission-weapon test by North Korea (plutonium-based).
September 3, 2017 2017 nuclear test 200–300 North Korea First "staged" thermonuclear weapon test claimed by North Korea.
Note

Calculating yields and controversy

Yields of nuclear explosions can be very hard to calculate, even using numbers as rough as in the kilotonne or megatonne range (much less down to the resolution of individual terajoules). Even under very controlled conditions, precise yields can be very hard to determine, and for less controlled conditions the margins of error can be quite large. For fission devices, the most precise yield value is found from "radiochemical/Fallout analysis"; that is, measuring the quantity of fission products generated, in much the same way as the chemical yield in chemical reaction products can be measured after a chemical reaction. The radiochemical analysis method was pioneered by Herbert L. Anderson.

For nuclear explosive devices where the fallout is not attainable or would be misleading, neutron activation analysis is often employed as the second most accurate method, with it having been used to determine the yield of both Little Boy [16] [17] and thermonuclear Ivy Mike's [18] respective yields.

Yields can also be inferred in a number of other remote sensing ways, including scaling law calculations based on blast size, infrasound, fireball brightness (Bhangmeter), seismographic data (CTBTO), [19] and the strength of the shock wave.

Alongside contemporary fundamental physics, data from nuclear testing resulted in the following total blast and thermal energy fractionation being observed for fission detonations near sea level [20] [21] [22]
Blast50%
Thermal energy35%
Initial ionizing radiation 5%
Residual fallout radiation10%

Enrico Fermi famously made a (very) rough calculation of the yield of the Trinity test by dropping small pieces of paper in the air and measuring how far they were moved by the blast wave of the explosion; that is, he found the blast pressure at his distance from the detonation in pounds per square inch, using the deviation of the papers' fall away from the vertical as a crude blast gauge/barograph, and then with pressure X in psi, at distance Y, in miles figures, he extrapolated backwards to estimate the yield of the Trinity device, which he found was about 10  kilotonnes of blast energy. [23] [24]

Fermi later recalled:

I was stationed at the Base Camp at Trinity in a position about ten miles [16 km] from the site of the explosion... About 40 seconds after the explosion the air blast reached me. I tried to estimate its strength by dropping from about six feet small pieces of paper before, during, and after the passage of the blast wave. Since, at the time, there was no wind[,] I could observe very distinctly and actually measure the displacement of the pieces of paper that were in the process of falling while the blast was passing. The shift was about 2 1/2 meters, which, at the time, I estimated to correspond to the blast that would be produced by ten thousand tonnes of TNT. [25] [26] [27]

The surface area (A) and volume (V) of a sphere are and respectively.

The blast wave, however, was likely assumed to grow out as the surface area of the approximately hemispheric near surface burst blast wave of the Trinity gadget. The paper is moved 2.5 meters by the wave, so the effect of the Trinity device is to displace a hemispherical shell of air of volume 2.5 m × 2π(16 km)2. Multiply by 1 atm to get an energy of 4.1×1014 J ~ 100 kT TNT.[ quantify ]

This photograph of the Trinity blast, captured by Berlyn Brixner, was used by G. I. Taylor to estimate its yield. Trinity Test Fireball 25ms.jpg
This photograph of the Trinity blast, captured by Berlyn Brixner, was used by G. I. Taylor to estimate its yield.

A good approximation of the yield of the Trinity test device was obtained in 1950 by the British physicist G. I. Taylor from simple dimensional analysis and an estimation of the heat capacity for very hot air. Taylor had initially done this highly classified work in mid-1941 and published an article with an analysis of the Trinity data fireball when the Trinity photograph data was declassified in 1950 (after the USSR had exploded its own version of this bomb).

Taylor noted that the radius R of the blast should initially depend only on the energy E of the explosion, the time t after the detonation, and the density ρ of the air. The only equation having compatible dimensions that can be constructed from these quantities is

Here S is a dimensionless constant having a value approximately equal to 1, since it is low-order function of the heat capacity ratio or adiabatic index

which is approximately 1 for all conditions.

Using the picture of the Trinity test shown here (which had been publicly released by the U.S. government and published in Life magazine), using successive frames of the explosion, Taylor found that R5/t2 is a constant in a given nuclear blast (especially between 0.38 ms, after the shock wave has formed, and 1.93 ms, before significant energy is lost by thermal radiation). Furthermore, he estimated a value for S numerically at 1.

Thus, with t = 0.025 s and the blast radius being 140 metres, and taking ρ to be 1 kg/m3 (the measured value at Trinity on the day of the test, as opposed to sea-level values of approximately 1.3 kg/m3) and solving for E, Taylor obtained that the yield was about 22 kilotonnes of TNT (90 TJ). This does not take into account the fact that the energy should only be about half this value for a hemispherical blast, but this very simple argument did agree to within 10% with the official value of the bomb's yield in 1950, which was 20 kilotons of TNT (84 TJ) (see G. I. Taylor, Proc. Roy. Soc. London A200, pp. 235–247 (1950)).

A good approximation to Taylor's constant S for below about 2 is [28]

The value of the heat capacity ratio here is between the 1.67 of fully dissociated air molecules and the lower value for very hot diatomic air (1.2), and under conditions of an atomic fireball is (coincidentally) close to the STP (standard) gamma for room-temperature air, which is 1.4. This gives the value of Taylor's S constant to be 1.036 for the adiabatic hypershock region where the constant R5/t2 condition holds.

As it relates to fundamental dimensional analysis, if one expresses all the variables in terms of mass M, length L, and time T: [29]

(think of the expression for kinetic energy, ),

and then derive an expression for, say, E, in terms of the other variables, by finding values of , , and in the general relation

such that the left and right sides are dimensionally balanced in terms of M, L, and T (i.e., each dimension has the same exponent on both sides).

Other methods and controversy

Where these data are not available, as in a number of cases, precise yields have been in dispute, especially when they are tied to questions of politics. The weapons used in the atomic bombings of Hiroshima and Nagasaki, for example, were highly individual and very idiosyncratic designs, and gauging their yield retrospectively has been quite difficult. The Hiroshima bomb, "Little Boy", is estimated to have been between 12 and 18 kilotonnes of TNT (50 and 75 TJ) (a 20% margin of error), while the Nagasaki bomb, "Fat Man", is estimated to be between 18 and 23 kilotonnes of TNT (75 and 96 TJ) (a 10% margin of error).

Such apparently small changes in values can be important when trying to use the data from these bombings as reflective of how other bombs would behave in combat, and also result in differing assessments of how many "Hiroshima bombs" other weapons are equivalent to (for example, the Ivy Mike hydrogen bomb was equivalent to either 867 or 578 Hiroshima weapons — a rhetorically quite substantial difference — depending on whether one uses the high or low figure for the calculation).

Other disputed yields have included the massive Tsar Bomba, whose yield was claimed between being "only" 50 megatonnes of TNT (210 PJ) or at a maximum of 57 megatonnes of TNT (240 PJ) by differing political figures, either as a way for hyping the power of the bomb or as an attempt to undercut it.

See also

Related Research Articles

<span class="mw-page-title-main">Little Boy</span> Atomic bomb dropped on Hiroshima

Little Boy was the name of the type of atomic bomb used in the bombing of the Japanese city of Hiroshima on 6 August 1945 during World War II, making it the first nuclear weapon used in warfare. The bomb was dropped by the Boeing B-29 Superfortress Enola Gay piloted by Colonel Paul W. Tibbets Jr., commander of the 509th Composite Group, and Captain Robert A. Lewis. It exploded with an energy of approximately 15 kilotons of TNT (63 TJ) and had an explosion radius of approximately 1.3 kilometers which caused widespread death across the city. The Hiroshima bombing was the second nuclear explosion in history, after the Trinity nuclear test.

<span class="mw-page-title-main">Nuclear weapon</span> Explosive weapon that utilizes nuclear reactions

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion reactions, producing a nuclear explosion. Both bomb types release large quantities of energy from relatively small amounts of matter.

A neutron bomb, officially defined as a type of enhanced radiation weapon (ERW), is a low-yield thermonuclear weapon designed to maximize lethal neutron radiation in the immediate vicinity of the blast while minimizing the physical power of the blast itself. The neutron release generated by a nuclear fusion reaction is intentionally allowed to escape the weapon, rather than being absorbed by its other components. The neutron burst, which is used as the primary destructive action of the warhead, is able to penetrate enemy armor more effectively than a conventional warhead, thus making it more lethal as a tactical weapon.

<span class="mw-page-title-main">Trinity (nuclear test)</span> First detonation of a nuclear weapon

Trinity was the code name of the first detonation of a nuclear weapon, conducted by the United States Army at 5:29 a.m. MWT on July 16, 1945, as part of the Manhattan Project. The test was of an implosion-design plutonium bomb, nicknamed the "gadget", of the same design as the Fat Man bomb later detonated over Nagasaki, Japan, on August 9, 1945. Concerns about whether the complex Fat Man design would work led to a decision to conduct the first nuclear test. The code name "Trinity" was assigned by J. Robert Oppenheimer, the director of the Los Alamos Laboratory, inspired by the poetry of John Donne.

<span class="mw-page-title-main">Tsar Bomba</span> Most powerful nuclear weapon ever detonated (1961)

The Tsar Bomba, also known by the alphanumerical designation "AN602", was a thermonuclear aerial bomb, and the most powerful nuclear weapon ever created and tested. The Soviet physicist Andrei Sakharov oversaw the project at Arzamas-16, while the main work of design was by Sakharov, Viktor Adamsky, Yuri Babayev, Yuri Smirnov, and Yuri Trutnev. The project was ordered by Nikita Khrushchev in July 1961 as part of the Soviet resumption of nuclear testing after the Test Ban Moratorium, with the detonation timed to coincide with the 22nd Congress of the Communist Party of the Soviet Union.

<span class="mw-page-title-main">Nuclear weapon design</span> Process by which nuclear WMDs are designed and produced

Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:

<span class="mw-page-title-main">Effects of nuclear explosions</span> Type and severity of damage caused by nuclear weapons

The effects of a nuclear explosion on its immediate vicinity are typically much more destructive and multifaceted than those caused by conventional explosives. In most cases, the energy released from a nuclear weapon detonated within the lower atmosphere can be approximately divided into four basic categories:

<span class="mw-page-title-main">Nuclear weapons testing</span> Controlled detonation of nuclear weapons for scientific or political purposes

Nuclear weapons tests are experiments carried out to determine the performance, yield, and effects of nuclear weapons. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by different conditions, and how personnel, structures, and equipment are affected when subjected to nuclear explosions. However, nuclear testing has often been used as an indicator of scientific and military strength. Many tests have been overtly political in their intention; most nuclear weapons states publicly declared their nuclear status through a nuclear test.

<span class="mw-page-title-main">Operation Upshot–Knothole</span> Series of 1950s US nuclear tests

Operation Upshot–Knothole was a series of eleven nuclear test shots conducted in 1953 at the Nevada Test Site. It followed Operation Ivy and preceded Operation Castle.

<span class="mw-page-title-main">Castle Bravo</span> 1954 U.S. thermonuclear weapon test in the Marshall Islands

Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of Operation Castle. Detonated on March 1, 1954, the device remains the most powerful nuclear device ever detonated by the United States and the first lithium deuteride-fueled thermonuclear weapon tested using the Teller-Ulam design. Castle Bravo's yield was 15 megatons of TNT [Mt] (63 PJ), 2.5 times the predicted 6 Mt (25 PJ), due to unforeseen additional reactions involving lithium-7, which led to radioactive contamination in the surrounding area.

<span class="mw-page-title-main">B83 nuclear bomb</span> American thermonuclear gravity bomb

The B83 is a variable-yield thermonuclear gravity bomb developed by the United States in the late 1970s that entered service in 1983. With a maximum yield of 1.2 megatonnes of TNT (5.0 PJ), it has been the most powerful nuclear weapon in the United States nuclear arsenal since October 25, 2011 after retirement of the B53. It was designed by Lawrence Livermore National Laboratory.

<span class="mw-page-title-main">B41 nuclear bomb</span> American high-yield thermonuclear weapon

The B-41 was a thermonuclear weapon deployed by the United States Strategic Air Command in the early 1960s. It was the most powerful nuclear bomb ever developed by the United States, with a maximum yield of 25 megatons of TNT. A top secret document, states “The US has stockpiled bombs of 9 MT and 23 MT...” which would likely be referring to the B-41's actual yield(s). The B-41 was the only three-stage thermonuclear weapon fielded by the U.S.

<span class="mw-page-title-main">Thermonuclear weapon</span> 2-stage nuclear weapon

A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 or plutonium-239. The first full-scale thermonuclear test was carried out by the United States in 1952 and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.

A pure fusion weapon is a hypothetical hydrogen bomb design that does not need a fission "primary" explosive to ignite the fusion of deuterium and tritium, two heavy isotopes of hydrogen used in fission-fusion thermonuclear weapons. Such a weapon would require no fissile material and would therefore be much easier to develop in secret than existing weapons. Separating weapons-grade uranium (U-235) or breeding plutonium (Pu-239) requires a substantial and difficult-to-conceal industrial investment, and blocking the sale and transfer of the needed machinery has been the primary mechanism to control nuclear proliferation to date.

<span class="mw-page-title-main">Nuclear explosion</span> Explosion from fission or fusion reaction

A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device. Nuclear explosions are used in nuclear weapons and nuclear testing.

<span class="mw-page-title-main">W56</span> American thermonuclear warhead designed in the late 1950s/early 1960s

The W56 was an American thermonuclear warhead produced starting in 1963 which saw service until 1993, on the Minuteman I and II ICBMs.

<span class="mw-page-title-main">W33 (nuclear warhead)</span> American nuclear artillery shell

The W33 was an American nuclear artillery shell designed for use in the 8-inch (203 mm) M110 howitzer and M115 howitzer.

<span class="mw-page-title-main">Operation Dominic</span> 1962 US nuclear test series

Operation Dominic was a series of 31 nuclear test explosions with a 38.1 Mt (159 PJ) total yield conducted in 1962 by the United States in the Pacific. This test series was scheduled quickly, in order to respond in kind to the Soviet resumption of testing after the tacit 1958–1961 test moratorium. Most of these shots were conducted with free fall bombs dropped from B-52 bomber aircraft. Twenty of these shots were to test new weapons designs; six to test weapons effects; and several shots to confirm the reliability of existing weapons. The Thor missile was also used to lift warheads into near-space to conduct high-altitude nuclear explosion tests; these shots were collectively called Operation Fishbowl.

Nuclear blackout, also known as fireball blackout or radar blackout, is an effect caused by explosions of nuclear weapons that disturbs radio communications and causes radar systems to be blacked out or heavily refracted so they can no longer be used for accurate tracking and guidance. Within the atmosphere, the effect is caused by the large volume of ionized air created by the energy of the explosion, while above the atmosphere it is due to the action of high-energy beta particles released from the decaying bomb debris. At high altitudes, the effect can spread over large areas, hundreds of kilometers. The effect slowly fades as the fireball dissipates.

A tamper is an optional layer of dense material surrounding the fissile material. It is used in nuclear weapon design to reduce the critical mass of a nuclear weapon and to delay the expansion of the reacting material through its inertia. Due to its inertia it delays the thermal expansion of the fissioning fuel mass, keeping it supercritical longer. Often the same layer serves both as tamper and as neutron reflector. The weapon disintegrates as the reaction proceeds and this stops the reaction, so the use of a tamper makes for a longer-lasting, more energetic and more efficient explosion. The yield can be further enhanced using a fissionable tamper.

References

  1. The B-41 Bomb
  2. 1 2 "Complete List of All U.S. Nuclear Weapons". The Nuclear Weapon Archive. October 14, 2006. Retrieved August 29, 2014.
  3. Ackerman, Spencer (October 23, 2011). "Last Nuclear 'Monster Weapon' Gets Dismantled". Wired . Retrieved 23 October 2011.
  4. Rowberry, Ariana. "Castle Bravo: The Largest U.S. Nuclear Explosion". Brookings Institution. Retrieved 23 September 2017.
  5. Norris, Robert S.; Arkin, William M. (May 1996). "Known Nuclear Tests Worldwide, 1945-1995". Bulletin of the Atomic Scientists. 52 (3): 63. Bibcode:1996BuAtS..52c..61.. doi:10.1080/00963402.1996.11456628.
  6. "| How Things Fly".
  7. Walker, John (June 2005). "Nuclear Bomb Effects Computer". Fourmilab. Retrieved 2009-11-22.
  8. 1 2 Walker, John (June 2005). "Nuclear Bomb Effects Computer Revised Edition 1962, Based on Data from The Effects of Nuclear Weapons, Revised Edition". Fourmilab. Retrieved 2009-11-22. The maximum fireball radius presented on the computer is an average between that for air and surface bursts. Thus, the fireball radius for a surface burst is 13 percent larger than that indicated and for an air burst, 13 percent smaller.
  9. Walker, John (June 2005). "Nuclear Bomb Effects Computer". Fourmilab. Retrieved 2009-11-22.
  10. Pickrell, Ryan (6 August 2020). "Beirut's Devastating Explosion Equivalent to Several Hundred Tons of TNT, Experts Say". ScienceAlert. Retrieved 2020-08-06.
  11. Sublette, Carey. "The B-41 (Mk-41) Bomb".
  12. 1 2 Cozzani, Franco (July 26, 2011). Fission, Fusion and Staging: A bird's view at the core concepts of nuclear weapon design and the curious ideas about it. IERI . Retrieved February 3, 2017..
  13. "Operation Dominic". The Nuclear Weapon Archive.
  14. "Nuclear Weapons Primer". Wisconsin Project on Nuclear Arms Control. Retrieved 2023-04-28.
  15. "Pakistan Nuclear Weapons: A Brief History of Pakistan's Nuclear Program". Federation of American Scientists. 11 December 2002. Retrieved 30 October 2019.
  16. Kerr, George D.; Young, Robert W.; Cullings, Harry M.; Christy, Robert F. (2005). "Bomb Parameters" (PDF). In Young, Robert W.; Kerr, George D. (eds.). Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki – Dosimetry System 2002. The Radiation Effects Research Foundation. pp. 42–43. Archived from the original (PDF) on 2015-08-10. Retrieved 2014-11-08.
  17. Malik, John (September 1985). "The Yields of the Hiroshima and Nagasaki Explosions" (PDF). Los Alamos National Laboratory. Retrieved March 9, 2014.
  18. US Army (1952). Operation Ivy Final Report Joint Task Force 132 (PDF). Archived (PDF) from the original on March 11, 2014.
  19. Estimating the yields of nuclear explosions. chapter 7. Seismic verification of nuclear testing treaties.
  20. "Chapter 3 Effects of Nuclear Explosions, Section I – General".
  21. "Nuclear Events and their Consequences" (PDF). The Borden Institute. Archived from the original (PDF) on 2017-01-25. approximately 82% of the fission energy is released as kinetic energy of the two large fission fragments. These fragments, being massive and highly charged particles, interact readily with matter. They transfer their energy quickly to the surrounding weapon materials, which rapidly become heated.
  22. "Nuclear Engineering Overview" (PDF). Technical University Vienna. Archived from the original (PDF) on May 15, 2018.. The various energies emitted per fission event are listed on p. 4: "167 MeV" is emitted by means of the repulsive electrostatic energy between the 2 daughter nuclei, which takes the form of the "kinetic energy" of the fission fragments, this kinetic energy results in both later blast and thermal effects. "5 MeV" is released in prompt or initial gamma radiation, "5 MeV" in prompt neutron radiation (99.36% of total), "7 MeV" in delayed neutron energy (0.64%), and "13 MeV" in beta decay and gamma decay(residual radiation).
  23. Article featuring Jack Aeby talking about his photograph.
  24. Rhodes 1986, pp. 674–677.
  25. E. Fermi. My Observations During the Explosion at Trinity on July 16, 1945.
  26. "Trinity Test, July 16, 1945, Eyewitness Accounts – Enrico Fermi" . Retrieved November 4, 2014.
  27. "Eyewitnesses to Trinity" (PDF). Nuclear Weapons Journal, Issue 2, 2005. Los Alamos National Laboratory. 2005. p. 45. Archived from the original (PDF) on 29 December 2018. Retrieved 18 February 2014.
  28. "Analytical mathematics for physical understanding, versus abstract numerical computation". The effects of nuclear weapons. Credible nuclear deterrence, debunking "disarm or be annihilated". Realistic effects and credible nuclear weapon capabilities for deterring or stopping aggressive invasions and attacks which could escalate into major conventional or nuclear wars. 2006-03-29.
  29. Thayer Watkins. The Expansion of the Fireball of an Explosion. San José State University.