B53 nuclear bomb

Last updated

B53
B53 at Pantex.jpg
Type Thermonuclear weapon
Place of originUnited States
Service history
In service1962–1997
Production history
Designer LANL [1]
Designed1958–1961 [1]
Manufacturer Atomic Energy Commission
Produced1961–1965 [1] [2]
No. builtAbout 340 [2]
Specifications
Mass8,850 lb (4,010 kg) [1]
Length12 ft 4 in (3.76 m) [1]
Diameter50 in (4.2 ft; 1.3 m) [1]

FillingFission: 100% oralloy
Fusion: Lithium-6 deuteride [1]
Blast yieldY1: 9 megatons
Y2: Unknown

The Mk/B53 was a high-yield bunker buster thermonuclear weapon developed by the United States during the Cold War. Deployed on Strategic Air Command bombers, the B53, with a yield of 9 megatons, was the most powerful weapon in the U.S. nuclear arsenal after the last B41 nuclear bombs were retired in 1976.

Contents

The B53 was the basis of the W-53 warhead carried by the Titan II missile, which was decommissioned in 1987. Although not in active service for many years before 2010, fifty B53s were retained during that time as part of the "hedge" portion [i] of the Enduring Stockpile until its complete dismantling in 2011. The last B53 was disassembled on 25 October 2011, a year ahead of schedule. [3] [4]

With its retirement, the largest bomb currently in service in the U.S. nuclear arsenal is the B83, with a maximum yield of 1.2 megatons. [5] The B53 was replaced in the bunker-busting role by the B61 Mod 11.

History

Hardtack Oak nuclear weapon test. HardtackOak.JPG
Hardtack Oak nuclear weapon test.

Development of the weapon began in 1955 by Los Alamos National Laboratory, based on the earlier Mk 21 and Mk 46 weapons. In March 1958 the Strategic Air Command issued a request for a new Class C (less than five tons, megaton-range) bomb to replace the earlier Mk 41. [2] A revised version of the Mk 46 became the TX-53 in 1959. The development TX-53 warhead was apparently never tested, although an experimental TX-46 predecessor design was detonated 28 June 1958 as Hardtack Oak, which detonated at a yield of 8.9 Megatons.

The Mk 53 entered production in 1962 and was built through June 1965. [2] About 340 bombs were built. It entered service aboard B-47 Stratojet, B-52G Stratofortress, [1] and B-58 Hustler bomber aircraft in the mid-1960s. From 1968 it was redesignated B53.

Some early versions of the bomb were dismantled beginning in 1967. After the Titan II program ended, the remaining W-53s were retired in the late 1980s. The B53 was retired in 1986, but in 1988 50 units were brought back into service and received the B53 Mod 1 safety upgrade so the air force could cover certain targets previously covered by Titan II. [6] These weapons remained in the active stockpile until the deployment of the B61-11 in 1997. At that point the obsolete B53s were slated for immediate disassembly; however, the process of disassembling the units was greatly hampered by safety concerns as well as a lack of resources. [7] In 2010 authorization was given to disassemble the 50 bombs at the Pantex plant in Texas. [8] The process of dismantling the last remaining B53 bomb in the stockpile was completed in 2011. [9] [10]

Specifications

The B53 was 12 feet 4 inches (3.76 m) long with a diameter of 50 inches (4.17 ft; 1.27 m). It weighed 8,850 pounds (4,010 kg), including the W53 warhead, the 800-to-900 lb (360-to-410 kg) parachute system and the honeycomb aluminum nose cone to enable the bomb to survive laydown delivery. It had five parachutes: [1] one 5-foot (1.52 m) pilot chute, one 16-foot (4.88 m) extractor chute, and three 48-foot (14.63 m) main chutes. Chute deployment depends on delivery mode, with the main chutes used only for laydown delivery. For free-fall delivery, the entire system was jettisoned.

The W53 warhead of the B53 used oralloy (highly enriched uranium) instead of plutonium for fission, [11] with a mix of lithium-6 deuteride fuel for fusion. The explosive lens comprised a mixture of RDX and TNT, which was not insensitive. Two variants were made: the B53-Y1, a "dirty" weapon using a U-238-encased secondary, and the B53-Y2 "clean" version with a non-fissile (lead or tungsten) secondary casing. [12] The explosive yield for the Y1 version was declassified in 2014 as being 9 Mt. [13]

In 1988, some B53s were upgraded to the B53 Mod 1 (B53-1) variant to improve weapon safety and to provide compatibility with the G/H variants of the B52 bomber. During this upgrade the weapon lost full-fuzing capability, retaining only the laydown fuzing mode. [14] The B53-1 had a selectable laydown time of 30 to 240 seconds in 30 second increments. [15]

Role

It was intended as a bunker buster weapon, using a surface blast after laydown deployment to transmit a shock wave through the earth to collapse its target. Attacks against the Soviet deep underground leadership shelters in the Chekhov/Sharapovo area south of Moscow envisaged multiple B53/W53 exploding at ground level. It has since been supplanted in such roles by the earth-penetrating B61 Mod 11, a bomb that penetrates the surface to deliver much more of its explosive energy into the ground, and therefore needs a much smaller yield to produce the same effects.

The B53 was intended to be retired in the 1980s, but 50 units remained in the active stockpile until the deployment of the B61-11 in 1997. At that point the obsolete B53s were slated for immediate disassembly; however, the process of disassembling the units was greatly hampered by safety concerns as well as a lack of resources. [7] [8] The last remaining B53 bomb began the disassembly processes on Tuesday, 25 October 2011 at the Energy Department's Pantex Plant. [4]

An April 2014 GAO report notes that the National Nuclear Security Administration (NNSA) is retaining canned sub-assemblies (CSAs) "associated with a certain warhead indicated as excess in the 2012 Production and Planning Directive are being retained in an indeterminate state pending a senior-level government evaluation of their use in planetary defense against earthbound asteroids." [16] In its FY2015 budget request, the NNSA noted that the B53 component disassembly was "delayed", leading some observers to conclude they might be the warhead CSAs being retained for potential planetary defense purposes. [17]

W-53

W53 physics package W53 nuclear bomb.jpg
W53 physics package
W53/Mk53 thermonuclear warhead inside its Mk6 RV. W-53 Sandia 1968 History of Mk 53 weapon.png
W53/Mk53 thermonuclear warhead inside its Mk6 RV.

The W-53 nuclear warhead of the Titan II ICBM used the same physics package as the B53, without the air drop-specific components like the parachute system and crushable structures in the nose and sides needed for lay-down delivery, reducing its mass to about 6,200 lb (2,800 kg). [18] The 8,140-pound (3,690 kg) Mark-6 re-entry vehicle containing the W53 warhead was about 123 inches (10.3 ft; 3.1 m) long, 7.5 feet (2.3 m) in diameter and was mounted atop a spacer which was 8.3 feet (2.5 m) in diameter at the missile interface (compared to the missile's core diameter of 10 feet [3.0 m]). With a yield of 9 megatons, it was the highest yield warhead ever deployed on a US missile. About 65 W53 warheads were constructed between December 1962 and December 1963. [18]

On 19 September 1980 a fuel leak caused a Titan II to explode within its silo in Arkansas, throwing the W53 warhead some distance away. Due to the safety measures built into the weapon, it did not explode or release any radioactive material. [19] Fifty-two active missiles were deployed in silos prior to the beginning of the retirement program in October 1982. [18]

Effects

B53 on display at the Atomic Testing Museum AtomicTestingMuseumB53nuclearbomb.jpg
B53 on display at the Atomic Testing Museum

Assuming a detonation at optimum height, a 9-megaton blast would result in a fireball with an approximate 2.9 to 3.4 mi (4.7 to 5.5 km) diameter. [20] The radiated heat would be sufficient to cause lethal burns to any unprotected person within a 20-mile (32 km) radius (1,250 sq mi or 3,200 km2). Blast effects would be sufficient to collapse most residential and industrial structures within a 9 mi (14 km) radius (254 sq mi or 660 km2); within 3.65 mi (5.87 km) (42 sq mi or 110 km2) virtually all above-ground structures would be destroyed and blast effects would inflict near 100% fatalities. Within 2.25 mi (3.62 km) a 500-rem (5-sievert) dose of ionizing radiation would be received by the average person, sufficient to cause a 50% to 90% casualty rate independent of thermal or blast effects at this distance. [21]

Accidents

List of B53s on display

Currently, seven actual B53s are on display at the following facilities or museums.

Notes

  1. 'Hedge stockpile': fully operational, but kept in storage; available within minutes or hours; not connected to delivery systems, but delivery systems are available (i.e. missile and bomb stockpiles kept at various Air Force bases)

Related Research Articles

<span class="mw-page-title-main">Warhead</span> Section of a device that contains the explosive agent or toxic material

A warhead is the section of a device that contains the explosive agent or toxic material that is delivered by a missile, rocket, torpedo, or bomb.

<span class="mw-page-title-main">Nuclear bunker buster</span> Earth-penetrating nuclear weapon

A nuclear bunker buster, also known as an earth-penetrating weapon (EPW), is the nuclear equivalent of the conventional bunker buster. The non-nuclear component of the weapon is designed to penetrate soil, rock, or concrete to deliver a nuclear warhead to an underground target. These weapons would be used to destroy hardened, underground military bunkers or other below-ground facilities. An underground explosion releases a larger fraction of its energy into the ground, compared to a surface burst or air burst explosion at or above the surface, and so can destroy an underground target using a lower explosive yield. This in turn could lead to a reduced amount of radioactive fallout. However, it is unlikely that the explosion would be completely contained underground. As a result, significant amounts of rock and soil would be rendered radioactive and lofted as dust or vapor into the atmosphere, generating significant fallout.

<span class="mw-page-title-main">B83 nuclear bomb</span> American thermonuclear gravity bomb

The B83 is a variable-yield thermonuclear gravity bomb developed by the United States in the late 1970s that entered service in 1983. With a maximum yield of 1.2 megatonnes of TNT (5.0 PJ), it has been the most powerful nuclear weapon in the United States nuclear arsenal since October 25, 2011 after retirement of the B53. It was designed by Lawrence Livermore National Laboratory.

<span class="mw-page-title-main">B61 nuclear bomb</span> Nuclear bomb

The B61 nuclear bomb is the primary thermonuclear gravity bomb in the United States Enduring Stockpile following the end of the Cold War. It is a low-to-intermediate yield strategic and tactical nuclear weapon featuring a two-stage radiation implosion design.

<span class="mw-page-title-main">Enduring Stockpile</span> United States arsenal of nuclear weapons post Cold War

The Enduring Stockpile is the United States' arsenal of nuclear weapons following the end of the Cold War.

<span class="mw-page-title-main">B28 nuclear bomb</span> Nuclear bomb

The B28, originally Mark 28, was a thermonuclear bomb carried by U.S. tactical fighter bombers, attack aircraft and bomber aircraft. From 1962 to 1972 under the NATO nuclear weapons sharing program, American B28s also equipped six Europe-based Canadian CF-104 squadrons known as the RCAF Nuclear Strike Force. It was also supplied for delivery by UK-based Royal Air Force Valiant and Canberra aircraft assigned to NATO under the command of SACEUR. In addition, certain U.S. Navy carrier based attack aircraft such as the A3D Skywarrior, A4D Skyhawk, and A3J Vigilante were equipped to carry the B28.

<span class="mw-page-title-main">B41 nuclear bomb</span> American high-yield thermonuclear weapon

The B-41 was a thermonuclear weapon deployed by the United States Strategic Air Command in the early 1960s. It was the most powerful nuclear bomb ever developed by the United States, with a maximum yield of 25 megatons of TNT. A top secret document, states “The US has stockpiled bombs of 9 MT and 23 MT...” which would likely be referring to the B-41's actual yield(s). The B-41 was the only three-stage thermonuclear weapon fielded by the U.S.

<span class="mw-page-title-main">Laydown delivery</span> Nuclear bomb delivery mode

Laydown delivery is a mode of delivery found in some nuclear gravity bombs: the bomb's descent to the target is slowed by parachute so that it lands on the ground without detonating. The bomb then detonates by timer some time later. Laydown delivery requires the weapon to be reinforced so that it can survive the force of impact.

The W69 was a United States nuclear warhead used in the AGM-69 SRAM.

<span class="mw-page-title-main">W85 (nuclear warhead)</span> Nuclear weapon

The W85 was a thermonuclear warhead developed by the United States to arm the Pershing II missile. It was a variable yield device with a selectable yield of 0.3, 5, 10 or 80 kilotonnes of TNT.

<span class="mw-page-title-main">Nuclear weapons delivery</span> Type of explosive arms

Nuclear weapons delivery is the technology and systems used to place a nuclear weapon at the position of detonation, on or near its target. Several methods have been developed to carry out this task.

<span class="mw-page-title-main">Tactical nuclear weapon</span> Nuclear weapon designed for use on a battlefield

A tactical nuclear weapon (TNW) or non-strategic nuclear weapon (NSNW) is a nuclear weapon that is designed to be used on a battlefield in military situations, mostly with friendly forces in proximity and perhaps even on contested friendly territory. Generally smaller in explosive power, they are defined in contrast to strategic nuclear weapons, which are designed mostly to be targeted at the enemy interior far away from the war front against military bases, cities, towns, arms industries, and other hardened or larger-area targets to damage the enemy's ability to wage war. As of 2024, no tactical nuclear weapons have ever been used in combat.

<span class="mw-page-title-main">W47</span>

The W47 was an American thermonuclear warhead used on the Polaris A-1 sub-launched ballistic missile system. Various models were in service from 1960 through the end of 1974. The warhead was developed by the Lawrence Radiation Laboratory between 1957 and 1960.

The B46 nuclear bomb was an American high-yield thermonuclear bomb which was designed and tested in the late 1950s. It was never deployed. Though originally intended to be a production design, the B46 ended up being only an intermediate prototype of the B-53 and was test fired several times. These prototypes were known as TX-46 units (Test/Experimental).

The Reliable Replacement Warhead (RRW) was a proposed new American nuclear warhead design and bomb family that was intended to be simple, reliable and to provide a long-lasting, low-maintenance future nuclear force for the United States. Initiated by the United States Congress in 2004, it became a centerpiece of the plans of the National Nuclear Security Administration (NNSA) to remake the nuclear weapons complex.

<span class="mw-page-title-main">Mark 39 nuclear bomb</span> Thermonuclear warhead

The Mark 39 nuclear bomb and W39 nuclear warhead were versions of an American thermonuclear weapon, which were in service from 1957 to 1966.

The B61 Family is a series of nuclear weapons based on the B61 nuclear bomb.

<span class="mw-page-title-main">Strategic nuclear weapon</span> Nuclear weapons used on strategic targets outside of battlefields

A strategic nuclear weapon (SNW) is a nuclear weapon that is designed to be used on targets often in settled territory far from the battlefield as part of a strategic plan, such as military bases, military command centers, arms industries, transportation, economic, and energy infrastructure, and countervalue targets such areas such as cities and towns. It is in contrast to a tactical nuclear weapon, which is designed for use in battle as part of an attack with and often near friendly conventional forces, possibly on contested friendly territory. As of 2024, strategic nuclear weapons have been used twice in the 1945 United States bombings of Hiroshima and Nagasaki.

<span class="mw-page-title-main">Mark 21 nuclear bomb</span> Thermonuclear weapon

The Mark 21 nuclear bomb was a United States thermonuclear gravity bomb first produced in 1955. It was based on the TX 21 "Shrimp" prototype that had been detonated during the Castle Bravo test in March 1954. While most of the Operation Castle tests were intended to evaluate weapons intended for immediate stockpile, or which were already available for use as part of the Emergency Capability Program, Castle Bravo was intended to test a design which would drastically reduce the size and costs of the first generation of air-droppable atomic weapons.

References

  1. 1 2 3 4 5 6 7 8 9 Cochran 1989, p. 58
  2. 1 2 3 4 Hansen 1988 , pp. 162–163
  3. Blaney, Betsy (25 October 2011). "US's most powerful nuclear bomb being dismantled". The Associated Press. Archived from the original on 25 April 2012. Retrieved 25 October 2011.
  4. 1 2 Ackerman, Spencer (23 October 2011). "Last Nuclear 'Monster Weapon' Gets Dismantled". Wired. Archived from the original on 19 October 2013. Retrieved 23 October 2011.
  5. Betsy, Blaney (25 October 2011). "Most powerful US nuclear bomb dismantled". NBC News. Archived from the original on 6 April 2013. Retrieved 26 October 2011.
  6. Sandia Weapon Review: Nuclear Weapon Characteristics Handbook (PDF) (Report). Sandia National Labs. September 1990. pp. 47, 64. SAND90-1238. Archived (PDF) from the original on 12 January 2022.
  7. 1 2 Johnston, William Robert (6 April 2009). "Multimegaton Weapons: The Largest Nuclear Weapons". Archived from the original on 4 June 2012. Retrieved 27 October 2011.
  8. 1 2 Walter Pincus (19 October 2010). "The Story Of The B-53 'Bunker Buster' Offers A Lesson In Managing Nuclear Weapons". The Washington Post. p. 13. Archived from the original on 8 November 2010. Retrieved 19 October 2010.
  9. "NNSA Announces Dismantlement of Last B53 Nuclear Bomb | National Nuclear Security Administration | (NNSA)". Archived from the original on 4 September 2017. Retrieved 4 September 2017.
  10. The Editors of the National Catholic Reporter (21 March 2013). Best Catholic Spirituality Writing 2012: 30 Inspiring Essays from the National Catholic Reporter. eBooks2go. pp. 8–. ISBN   978-1-61813-984-9.
  11. Nuclear Explosive Safety Study of B53 Mechanical Disassembly Operations at the USDOE Pantex Plant (PDF) (Report). Department of Energy Nuclear Explosive Safety Study Group. 1 October 1993. p. 21. Archived (PDF) from the original on 11 June 2016.
  12. A W Betts; G JKeto (17 June 1963). TWX to A W Betts, Subject: Guidance Regarding MK 53Y2 (Deleted) (Report). NV0104000. Archived from the original on 11 February 2022.
  13. Moury, Matthew; Majldl, Vahld (28 November 2014). (U)Declassification Determination (PDF) (Report). p. US DoD. Archived (PDF) from the original on 28 March 2017. Retrieved 20 September 2018. that the total weapon yield of the B53/W53 Y1 was 9 Mt.
  14. Sandia Weapon Review: Nuclear Weapon Characteristics Handbook, p. 64.
  15. Nuclear Explosive Safety Study of B53 Mechanical Disassembly Operations at the USDOE Pantex Plant, p. 21.
  16. ""Actions Needed by NNSA to Clarify Dismantlement Performance Goal", Report to the Subcommittee on Energy and Water Development, Committee on Appropriations, U.S. Senate, United States Government Accountability Office" (PDF). April 2014. Archived (PDF) from the original on 26 July 2014. Retrieved 4 August 2014.
  17. "Department of Energy FY 2015 Congressional Budget Request for the National Nuclear Security Administration" (PDF). March 2014. Archived (PDF) from the original on 7 August 2014. Retrieved 4 August 2014.
  18. 1 2 3 Cochran 1989 , p. 59
  19. "Titan II at Little Rock AFB". The Military Standard. Archived from the original on 17 July 2011. Retrieved 27 October 2011.
  20. Walker, John (June 2005). "Nuclear Bomb Effects Computer". Fourmilab. Archived from the original on 24 September 2015. Retrieved 22 November 2009.
  21. Wellerstein, Alex (2012–2014). "NukeMap v2.42". NukeMap. Archived from the original on 8 August 2014. Retrieved 28 July 2014.
  22. Mason & Hanger - Silas Mason Co. Inc. (16 February 1965). "Broken Arrow Examination" (PDF). Government Attic. p. 13-38 of PDF.

Bibliography