Ivy Mike | |
---|---|
Information | |
Country | United States Marshall Islands |
Test series | Operation Ivy |
Test site | Enewetak, Trust Territory of the Pacific Islands |
Date | November 1, 1952 |
Test type | Atmospheric |
Yield | 10.4 megatons of TNT |
Test chronology | |
Ivy Mike was the codename given to the first full-scale [note 1] test of a thermonuclear device, in which a significant fraction of the explosive yield comes from nuclear fusion. [1] [2] [3] Ivy Mike was detonated on November 1, 1952, by the United States on the island of Elugelab in Enewetak Atoll, in the now independent island nation of the Marshall Islands, as part of Operation Ivy. It was the first full test of the Teller–Ulam design, a staged fusion device. [4]
Due to its physical size and fusion fuel type (cryogenic liquid deuterium), the "Mike" device was not suitable for use as a deliverable weapon. It was intended as a "technically conservative" proof of concept experiment to validate the concepts used for multi-megaton detonations. [4]
Samples from the explosion had traces of the isotopes plutonium-246, plutonium-244, and the predicted elements einsteinium and fermium. [5]
Beginning with the Teller–Ulam breakthrough in March 1951, there was steady progress made on the issues involved in a thermonuclear explosion and there were additional resources devoted to staging, and political pressure towards seeing, an actual test of a hydrogen bomb. [6] : 137–139 A date within 1952 seemed feasible. [7] : 556 In October 1951 physicist Edward Teller pushed for July 1952 as a target date for a first test, but project head Marshall Holloway thought October 1952, a year out, was more realistic given how much engineering and fabrication work the test would take and given the need to avoid the summer monsoon season in the Marshall Islands. [8] : 482 On June 30, 1952, United States Atomic Energy Commission chair Gordon Dean showed President Harry S. Truman a model of what the Ivy Mike device would look like; the test was set for November 1, 1952. [7] : 590
One attempt to significantly delay the test, or not hold it at all, was made by the State Department Panel of Consultants on Disarmament, chaired by J. Robert Oppenheimer, who felt that avoiding a test might forestall the development of a catastrophic new weapon and open the way for new arms agreements between the United States and the Soviet Union. [6] : 139–142 The panel lacked political allies in Washington, however, and no test delay was made on this account. [6] : 145–148
There was a separate desire voiced for a very short delay in the test, for more political reasons: it was scheduled to take place just a few days before the 1952 presidential election. [8] : 497 Truman wanted to keep the thermonuclear test away from partisan politics but had no desire to order a postponement of it himself; however he did make it known that he would be fine if it was delayed past the election due to "technical reasons" being found. [7] : 590–591 [8] : 497–498 Atomic Energy Commission member Eugene M. Zuckert was sent to the Enewetak test site to see if such a reason could be found, but weather considerations – on average there were only a handful of days each month that were suitable for the test – indicated it should go ahead as planned, and in the end no schedule delay took place. [7] : 590–592 [8] : 498
The 82-short-ton (74-metric-ton) "Mike" device was a building that resembled a factory rather than a weapon. [9] It has been reported that Soviet engineers derisively referred to "Mike" as a "thermonuclear installation". [10] : 391
The device was designed by Richard Garwin, a student of Enrico Fermi, on the suggestion of Edward Teller. It had been decided that nothing other than a full-scale test would validate the idea of the Teller-Ulam design. Garwin was instructed to use very conservative estimates when designing the test, and told that it need not be small and light enough to be deployed by air. [11] : 327
Liquid deuterium was chosen as the fuel for the fusion reaction because its use simplified the experiment from a physicist's point of view, and made the results easier to analyze. From an engineering point of view, its use necessitated the development of previously unknown technologies to handle the difficult material, which had to be stored at extremely low temperatures, near absolute zero. [9] : 41–42 A large cryogenics plant was built to produce liquid hydrogen (used for cooling the device) and deuterium (fuel for the test). A 3,000-kilowatt (4,000 hp) power plant was also constructed for the cryogenics facility. [9] : 44
The device that was developed for testing the Teller-Ulam design became known as a "Sausage" design: [9] : 43
The entire "Mike" device (including cryogenic equipment) weighed 82 short tons (74 metric tons). It was housed in a large corrugated-aluminum building, called the shot cab, which was 88 ft (27 m) long, 46 ft (14 m) wide, and 61 ft (19 m) high, with a 300 ft (91 m) signal tower. Television and radio signals were used to communicate with a control room on USS Estes where the firing party was located. [9] : 43–44 [17] : 42
It was set up on the Pacific island of Elugelab, part of the Enewetak atoll. Elugelab was connected to the islands of Dridrilbwij (Teiteir), Bokaidrikdrik (Bogairikk), and Boken (Bogon) by a 9,000 ft (2.7 km) artificial causeway. Atop the causeway was an aluminum-sheathed plywood tube filled with helium ballonets, referred to as a Krause-Ogle box. [17] : 34 This allowed gamma and neutron radiation to pass uninhibited to instruments in an unmanned detection station, Station 202, on Boken Island. From there signals were sent to recording equipment at Station 200, also housed in a bunker on Boken Island. Personnel returned to Boken Island after the test to recover the recording equipment. [17] : 136, 138
In total, 9,350 military and 2,300 civilian personnel were involved in the "Mike" shot. [17] : 2 The operation involved the cooperation of the United States army, navy, air force and intelligence services. The USS Curtiss brought components from the United States to Elugelab for assembly. Work was completed on October 31, at 5.00 p.m. Within an hour, personnel were evacuated in preparation for the blast. [9] : 43–44
The test was carried out on 1 November 1952 at 07:15 local time (19:15 on 31 October, Greenwich Mean Time). It produced a yield of 10.4 megatons of TNT (44 PJ ). [18] [19] 77% of the final yield came from fast fission of the uranium tamper, which produced large amounts of radioactive fallout.[ citation needed ]
The fireball created by the explosion had a maximum radius of 2.9 to 3.3 km (1.8 to 2.1 mi). [20] [21] [22] The maximum radius was reached several seconds after the detonation, during which the hot fireball lifted up due to buoyancy. While still relatively close to the ground, the fireball had yet to reach its maximum dimensions and was thus approximately 5.2 km (3.2 mi) wide. The mushroom cloud rose to an altitude of 17 km (56,000 ft) in less than 90 seconds. One minute later it had reached 33 km (108,000 ft), before stabilizing at 41 km (135,000 ft) with the top eventually spreading out to a diameter of 161 km (100 mi) with a stem 32 km (20 mi) wide. [23]
The blast created a crater 1.9 km (6,230 ft) in diameter and 50 m (164 ft) deep where Elugelab had once been; [24] the blast and water waves from the explosion (some waves up to 6 m (20 ft) high) stripped the test islands clean of vegetation, as observed by a helicopter survey within 60 minutes after the test, by which time the mushroom cloud and steam were blown away. Radioactive coral debris fell upon ships positioned 56 km (35 mi) away, and the immediate area around the atoll was heavily contaminated. [25] [26] [27]
Close to the fireball, lightning discharges were rapidly triggered. [28] The entire shot was documented by the filmmakers of Lookout Mountain studios. [29] A post-production explosion sound was overdubbed over what was a completely silent detonation from the vantage point of the camera, with the blast wave sound only arriving later, as akin to thunder, with the exact time depending on its distance. [30] The film was also accompanied by powerful, Wagner-esque music featured on many test films of that period and was hosted by actor Reed Hadley. A private screening was given to President Dwight D. Eisenhower who had succeeded President Harry S. Truman in January 1953. [31] : 80 In 1954, the film was released to the public after censoring, and was shown on commercial television channels. [31] : 183
Edward Teller, perhaps the most ardent supporter of the development of the hydrogen bomb, was in Berkeley, California, at the time of the shot. [32] He was able to receive first notice that the test was successful by observing a seismometer, which picked up the shock wave that traveled through the earth from the Pacific Proving Grounds. [33] [8] : 777–778 In his memoirs, Teller wrote that he immediately sent an unclassified telegram to Dr. Elizabeth "Diz" Graves, the head of the rump project remaining at Los Alamos during the shot. The telegram contained only the words "It's a boy," which came hours earlier than any other word from Enewetak. [34] [11] : 352
An hour after the bomb was detonated, U.S. Air Force pilots took off from Enewetak Island to fly into the atomic cloud and take samples. Pilots had to monitor extra readouts and displays while "piloting under unusual, dangerous, and difficult conditions” including heat, radiation, unpredictable winds and flying debris. "Red Flight" Leader Virgil K. Meroney flew into the stem of the explosion first. In five minutes, he had gathered all the samples he could, and exited. Next Bob Hagan and Jimmy Robinson entered the cloud. Robinson hit an area of severe turbulence, entering a spin and barely retaining consciousness. He regained control of his plane at 20,000 feet, but the electromagnetic storm had disrupted his instruments. In rain and poor visibility, without working instruments, Hagan and Robinson were unable to find the KB-29 tanker aircraft to refuel. [5] [17] : 96 They attempted to return to the field at Enewetak. Hagan, out of fuel, made a successful dead-stick landing on the runway. Robinson's F-84 Thunderjet crashed and sank 3.5 miles short of the island. Robinson's body was never recovered. [5] [35] [36]
Fuel tanks on the airplane's wings had been modified to scoop up and filter passing debris. The filters from the surviving planes were sealed in lead and sent to Los Alamos, New Mexico for analysis. Radioactive and contaminated with calcium carbonate, the "Mike" samples were extremely difficult to handle. Scientists at Los Alamos found traces in them of isotopes plutonium-246 and plutonium-244. [5]
Al Ghiorso at the University of California, Berkeley speculated that the filters might also contain atoms that had transformed, through radioactive decay, into the predicted but undiscovered elements 99 and 100. Ghiorso, Stanley Gerald Thompson and Glenn Seaborg obtained half a filter paper from the Ivy Mike test. They were able to detect the existence of the elements einsteinium and fermium, which had been produced by intensely concentrated neutron flux about the detonation site. The discovery was kept secret for several years, but the team was eventually given credit. In 1955 the two new elements were named in honor of Albert Einstein and Enrico Fermi. [5] [37] [38]
A simplified and lightened bomb version (the EC-16) was prepared and scheduled to be tested in operation Castle Yankee, as a backup in case the non-cryogenic "Shrimp" fusion device (tested in Castle Bravo) failed to work; that test was canceled when the Bravo device was tested successfully, making the cryogenic designs obsolete.[ citation needed ]
Nuclear Weapons Design are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:
Operation Ivy was the eighth series of American nuclear tests, coming after Tumbler-Snapper and before Upshot–Knothole. The two explosions were staged in late 1952 at Enewetak Atoll in the Pacific Proving Ground in the Marshall Islands.
Operation Castle was a United States series of high-yield (high-energy) nuclear tests by Joint Task Force 7 (JTF-7) at Bikini Atoll beginning in March 1954. It followed Operation Upshot–Knothole and preceded Operation Teapot.
Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing thermonuclear weapons. Conducted at the new Pacific Proving Ground, on islands of the Enewetak Atoll, it mounted the devices on large steel towers to simulate air bursts. This series of nuclear weapons tests was preceded by Operation Ranger and succeeded by Operation Buster-Jangle.
Ivy King was the largest pure-fission nuclear bomb ever tested by the United States. The bomb was tested during the Truman administration as part of Operation Ivy. This series of tests involved the development of very powerful nuclear weapons in response to the nuclear weapons program of the Soviet Union.
Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of Operation Castle. Detonated on March 1, 1954, the device remains the most powerful nuclear device ever detonated by the United States and the first lithium deuteride-fueled thermonuclear weapon tested using the Teller-Ulam design. Castle Bravo's yield was 15 megatons of TNT [Mt] (63 PJ), 2.5 times the predicted 6 Mt (25 PJ), due to unforeseen additional reactions involving lithium-7, which led to radioactive contamination in the surrounding area.
Elugelab, or Elugelap, was an island, part of the Enewetak Atoll in the Marshall Islands. It was destroyed in the world's first full-scale thermonuclear explosion, the Mike shot of Operation Ivy, on November 1, 1952. Prior to being destroyed, the island was described as "just another small naked island of the atoll".
The Soviet atomic bomb project was the classified research and development program that was authorized by Joseph Stalin in the Soviet Union to develop nuclear weapons during and after World War II.
RDS-37 was the Soviet Union's first two-stage hydrogen bomb, first tested on 22 November 1955. The weapon had a nominal yield of approximately 3 megatons. It was scaled down to 1.6 megatons for the live test.
A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion fuel to increase the rate, and thus yield, of a fission reaction. The neutrons released by the fusion reactions add to the neutrons released due to fission, allowing for more neutron-induced fission reactions to take place. The rate of fission is thereby greatly increased such that much more of the fissile material is able to undergo fission before the core explosively disassembles. The fusion process itself adds only a small amount of energy to the process, perhaps 1%.
Castle Romeo was the code name given to one of the tests in the Operation Castle series of U.S. nuclear tests. It was the first test of the TX-17 thermonuclear weapon, the first deployed thermonuclear bomb.
A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 or plutonium-239. The first full-scale thermonuclear test was carried out by the United States in 1952, and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.
Jordan Carson Mark was a Canadian-American mathematician best known for his work on developing nuclear weapons for the United States at the Los Alamos National Laboratory. Mark joined the Manhattan Project in 1945, and continued to work at Los Alamos under the leadership of Norris Bradbury after World War II ended. He became the leader of the Theoretical Division at the laboratory in 1947, a position he held until 1973. He oversaw the development of new weapons, including the hydrogen bomb in the 1950s. On the hydrogen bomb project he was able to bring together experts like Edward Teller, Stanislaw Ulam and Marshall Holloway despite their personal differences.
The Pacific Proving Grounds was the name given by the United States government to a number of sites in the Marshall Islands and a few other sites in the Pacific Ocean at which it conducted nuclear testing between 1946 and 1962. The U.S. tested a nuclear weapon on Bikini Atoll on June 30, 1946. This was followed by Baker on July 24, 1946.
The Teller–Ulam design is a technical concept behind modern thermonuclear weapons, also known as hydrogen bombs. The design – the details of which are military secrets and known to only a handful of major nations – is believed to be used in virtually all modern nuclear weapons that make up the arsenals of the major nuclear powers.
Greenhouse-Item was an American nuclear test conducted on May 25, 1951, as part of Operation Greenhouse at the Pacific Proving Ground, specifically on the island of Engebi in the Eniwetok Atoll in the Central Pacific Ocean. This test explosion was the second test of a boosted fission weapon, the second instance of artificial thermonuclear fusion, following the Greenhouse George test on May 9.
The Mark 16 nuclear bomb was a large American thermonuclear bomb, based on the design of the Ivy Mike, the first thermonuclear device ever test fired. The Mark 16 is more properly designated TX-16/EC-16 as it only existed in Experimental/Emergency Capability (EC) versions.
Marshall Glecker Holloway was an American physicist who worked at the Los Alamos Laboratory during and after World War II. He was its representative, and the deputy scientific director, at the Operation Crossroads nuclear tests at Bikini Atoll in the Pacific in July 1946. Holloway became the head of the Laboratory's W Division, responsible for new weapons development. In September 1952 he was charged with designing, building and testing a thermonuclear weapon, popularly known as a hydrogen bomb. This culminated in the Ivy Mike test in November of that year.
Sundial was the codename of one of two massive nuclear bombs planned for testing by the University of California Radiation Laboratory, Livermore Branch as part of a classified American weapons project in the early 1950s. Announced by Edward Teller at a meeting of the General Advisory Committee of the Atomic Energy Commission, it was intended to have a yield of 10 gigatons of TNT, while its counterpart, Gnomon, was intended to have a yield of 1 gigaton.
Mike was meant to be a proof-of-principle test of radiation implosion, and not a deliverable bomb. Housed in a six-story building, weighing more than 80 tons, the cryogenically-cooled device was later described disdainfully by the Russians as a "thermonuclear installation."
At 7:15 a.m. local time on Elugelab Island, Mike was detonated from a control ship 30 m. away. The detonation resulted in a massive explosion, equivalent to 10.4 Megatons of TNT.