Project Plowshare

Last updated

The 1962 "Sedan" plowshares shot displaced 12 million tons of earth and created a crater 320 feet (98 m) deep and 1,280 feet (390 m) wide Sedan Plowshare Crater.jpg
The 1962 "Sedan" plowshares shot displaced 12 million tons of earth and created a crater 320 feet (98 m) deep and 1,280 feet (390 m) wide

Project Plowshare was the overall United States program for the development of techniques to use nuclear explosives for peaceful construction purposes. The program was organized in June 1957 as part of the worldwide Atoms for Peace efforts. As part of the program, 35 [1] nuclear warheads were detonated in 27 separate tests. A similar program was carried out in the Soviet Union under the name Nuclear Explosions for the National Economy.

Contents

Successful demonstrations of non-combat uses for nuclear explosives include rock blasting, stimulation of tight gas, chemical element manufacture, [lower-alpha 1] unlocking some of the mysteries of the R-process of stellar nucleosynthesis and probing the composition of the Earth's deep crust, creating reflection seismology vibroseis data which has helped geologists and follow-on mining company prospecting. [2] [3] [4]

The project's uncharacteristically large and atmospherically vented Sedan nuclear test also led geologists to determine that Barringer crater was formed as a result of a meteor impact and not from a volcanic eruption, as had earlier been assumed. This became the first crater on Earth definitely proven to be from an impact event. [5]

Negative impacts from Project Plowshare's tests generated significant public opposition, which eventually led to the program's termination in 1977. [6] These consequences included tritiated water (projected to increase by CER Geonuclear Corporation to a level of 2% of the then-maximum level for drinking water) [7] and the deposition of fallout from radioactive material being injected into the atmosphere before underground testing was mandated by treaty.

Rationale

By exploiting the peaceful uses of the "friendly atom" in medical applications, earth removal, and later in nuclear power plants, the nuclear industry and government sought to allay public fears about nuclear technology and promote the acceptance of nuclear weapons. [8] At the peak of the Atomic Age, the United States Federal government initiated Project Plowshare, involving "peaceful nuclear explosions". The United States Atomic Energy Commission chairman at the time, Lewis Strauss, announced that the Plowshares project was intended to "highlight the peaceful applications of nuclear explosive devices and thereby create a climate of world opinion that is more favorable to weapons development and tests". [9] [10] [ need quotation to verify ] These tests were to demonstrate that atomic bombs can be used for peaceful purposes, that the atomic sword could be beaten into a plowshare.

Proposals

One of the Chariot schemes involved chaining five thermonuclear devices to create an artificial harbor. Project Chariot plans.jpg
One of the Chariot schemes involved chaining five thermonuclear devices to create an artificial harbor.

Proposed uses for nuclear explosives under Project Plowshare included widening the Panama Canal, constructing a new sea-level waterway through Nicaragua nicknamed the Pan-Atomic Canal, cutting paths through mountainous areas for highways, and connecting inland river systems. Other proposals involved blasting caverns for water, natural gas, and petroleum storage. Serious consideration was also given to using these explosives for various mining operations. One proposal suggested using nuclear blasts to connect underground aquifers in Arizona. Another plan involved surface blasting on the western slope of California's Sacramento Valley for a water transport project. [6]

One of the first serious cratering proposals that came close to being carried out was Project Chariot, which would have used several hydrogen bombs to create an artificial harbor at Cape Thompson, Alaska. It was never carried out due to concerns for the native populations and the fact that there was little potential use for the harbor to justify its risk and expense. [11]

Project Carryall, [12] proposed in 1963 by the Atomic Energy Commission, the California Division of Highways (now Caltrans), and the Santa Fe Railway, would have used 22 nuclear explosions to excavate a massive roadcut through the Bristol Mountains in the Mojave Desert, to accommodate construction of Interstate 40 and a new rail line. [6]

A project proposed in a 1963 memorandum by Lawrence Livermore National Laboratory would have used 520 2-megaton nuclear explosions to excavate a canal through the Negev Desert in Israel at an estimated cost of $575 million ($5 billion in 2021), to serve as an alternative route to the Suez Canal. [13] [14]

At the end of the program, a major objective was to develop nuclear explosives, and blast techniques, for stimulating the flow of natural gas in "tight" underground reservoir formations. In the 1960s, a proposal was suggested for a modified in situ shale oil extraction process which involved creation of a rubble chimney (a zone in the oil shale formation created by breaking the rock into fragments) using a nuclear explosive. [15] However, this approach was abandoned for a number of technical reasons.

Plowshare testing

The first Peaceful Nuclear Explosion (PNE) blast was Project Gnome, conducted on December 10, 1961, in a salt bed 24 mi (39 km) southeast of Carlsbad, New Mexico. The explosion released 3.1 kilotons (13 TJ) of energy yield at a depth of 1,184 ft (361 m) which resulted in the formation of a 170 ft (52 m) diameter, 80 ft (24 m) high cavity. The test had many objectives, the most public of which involved the generation of steam which could then be used to generate electricity. Another objective was the production of useful radioisotopes and their recovery. Yet another experiment involved neutron time-of-flight physics, and a fourth experiment involved geophysical studies based upon the timed seismic source. Only the last objective was considered a complete success. The blast unintentionally vented radioactive steam while the press watched. The partly developed Project Coach detonation experiment that was to follow adjacent to the Gnome test was then canceled.

A number of proof-of-concept cratering blasts were conducted; including the Buggy shot of five 1-kiloton devices for a channel/trench in Area 30 and the largest being 104 kiloton (435 terajoule) on July 6, 1962, at the north end of Yucca Flats, within the Atomic Energy Commission's Nevada Test Site (NTS) in southern Nevada. The shot, "Sedan", displaced more than 12 million short tons (11,000 million kilograms) of soil and resulted in a radioactive cloud that rose to an altitude of 12,000 ft (3.7 km). The radioactive dust plume headed northeast and then east towards the Mississippi River. [6]

Over the next 11 years, 26 more nuclear explosion tests were conducted under the United States PNE program. The radioactive blast debris from 839 U.S. underground nuclear test explosions remain buried in-place and have been judged impractical to remove by the DOE's Nevada Site Office. Funding quietly ended in 1997, and costs for the program have been estimated at more than (US) $770 million. [6]

Natural gas stimulation experiment

Three nuclear explosion experiments were intended to stimulate the flow of natural gas from "tight" formation gas fields. Industrial participants included El Paso Natural Gas Company for the Gasbuggy test; CER Geonuclear Corporation and Austral Oil Company for the Rulison test; [16] and CER Geonuclear Corporation for the Rio Blanco test.

The final PNE blast took place on May 17, 1973, under Fawn Creek, 47.5 mi (76.4 km) north of Grand Junction, Colorado. Three 30-kiloton detonations took place simultaneously at depths of 5,768, 6,152 and 6,611 ft (1,758, 1,875 and 2,015 m). If it had been successful, plans called for the use of hundreds of specialized nuclear explosives in the western Rockies gas fields. The previous two tests had indicated that the produced natural gas would be too radioactive for safe use; the Rio Blanco test found that the three blast cavities had not connected as hoped, and the resulting gas still contained unacceptable levels of radionuclides. [17]

By 1974, approximately $82 million had been invested in the nuclear gas stimulation technology program. It was estimated that even after 25 years of production of all the natural gas deemed recoverable, only 15 to 40% of the investment would be recouped. Also, the concept that stove burners in California might soon emit trace amounts of blast radionuclides into family homes did not sit well with the general public. The contaminated gas was never channeled into commercial supply lines.

The situation remained so for the next three decades, but a resurgence in Colorado Western slope natural gas drilling has brought resource development closer and closer to the original underground detonations. By mid-2009, 84 drilling permits had been issued within a 3-mile (4.8 km) radius, with 11 permits within one mi (1.6 km) mile of the site. [18]

Impacts, opposition and economics

Operation Plowshare "started with great expectations and high hopes". Planners believed that the projects could be completed safely, but there was less confidence that they could be completed more economically than conventional methods. Moreover, there was insufficient public and Congressional support for the projects. Projects Chariot and Coach were two examples where technical problems and environmental concerns prompted further feasibility studies which took several years, and each project was eventually canceled. [2]

Citizen groups voiced concerns and opposition to some of the Plowshare tests. There were concerns that the blast effects from the Schooner explosion could dry up active wells or trigger an earthquake. There was opposition to both Rulison and Rio Blanco tests because of possible radioactive gas flaring operations and other environmental hazards. [2] In a 1973 article, Time used the term "Project Dubious" to describe Operation Plowshare. [17]

There were negative impacts from a select few of Project Plowshare’s 27 nuclear explosions, primarily those conducted in the project's infancy and those that were very high in explosive yield.

On Project Gnome and the Sedan test: [6]

Project Gnome vented radioactive steam over the very press gallery that was called to confirm its safety. The next blast, a 104-kiloton detonation at Yucca Flat, Nevada, displaced 12 million tons of soil and resulted in a radioactive dust cloud that rose 12,000 feet [3,700 m] and plumed toward the Mississippi River. Other consequences – blighted land, relocated communities, tritium-contaminated water, radioactivity, and fallout from debris being hurled high into the atmosphere – were ignored and downplayed until the program was terminated in 1977, due in large part to public opposition. [6]

Project Plowshare shows how something intended to improve national security can unwittingly do the opposite if it fails to fully consider the social, political, and environmental consequences. It also “underscores that public resentment and opposition can stop projects in their tracks”. [6]

United States and Soviet Union/Russia nuclear stockpiles. The slow down in the production of nuclear weapons, beginning in the late 1970s in the US, greatly impacted on the economic calculations of peaceful uses of nuclear detonations. US and USSR nuclear stockpiles.svg
United States and Soviet Union/Russia nuclear stockpiles. The slow down in the production of nuclear weapons, beginning in the late 1970s in the US, greatly impacted on the economic calculations of peaceful uses of nuclear detonations.

The social scientist Benjamin Sovacool contends that the main problem with oil and gas stimulation, which many considered the most promising economic use of nuclear detonations, was that the produced oil and gas was radioactive, which caused consumers to reject it and this was ultimately the program's downfall. [6] Oil and gas are sometimes naturally radioactive to begin with, however, and the industry is set up to deal with oil and gas that contain radioactive contaminants. [19] Historian Dr. Michael Payne notes that it was primarily changing public opinion, in response to events such as the Cuban Missile Crisis, that drove the protests, [20] court cases and general hostility that ended the oil and gas stimulation efforts. Furthermore, as the years went by without further development and production of nuclear weapons slowed, interest in peaceful applications waned in the 1950s–60s. Cheaper, non-nuclear stimulation techniques suitable for most US gas fields were developed in the following years. [21] [22]

As a point of comparison, the most successful and profitable nuclear stimulation effort that did not result in customer product contamination issues was the 1976 Project Neva on the Sredne-Botuobinsk gas field in the Soviet Union, made possible by multiple cleaner stimulation explosives, favorable rock strata and the possible creation of an underground contaminant storage cavity. [23] [24] The Soviet Union retains the record for the cleanest/lowest fission-fraction nuclear devices so far demonstrated.

The public records for devices that produced the highest proportion of their yield via fusion-only reactions, and therefore created orders of magnitude smaller amounts of long-lived fission products as a result, are the USSR's Peaceful nuclear explosions of the 1970s, with the three detonations that excavated part of Pechora–Kama Canal, being cited as 98% fusion each in the Taiga test's three 15-kiloton explosive yield devices, that is, a total fission fraction of 0.3 kilotons in a 15 kt device. [25] In comparison, the next three high fusion-yielding devices were all much too high in total explosive yield for oil and gas stimulation: the 50-megaton Tsar Bomba achieved a yield 97% derived from fusion, [26] while in the US, the 9.3-megaton Hardtack Poplar test is reported as 95.2%, [27] and the 4.5-megaton Redwing Navajo test as 95% derived from fusion. [28]

Nuclear tests

The U.S. conducted 27 PNE shots in conjunction with other, weapons-related, test series. [2] A report by the Federation of American Scientists includes yields slightly different from those presented below. [29]

Plowshare nuclear tests
Test nameDateLocationTypeDepth of BurialMediumYield (kilotons)Test seriesObjective
Gnome December 10, 1961 Carlsbad, New Mexico Shaft1,185 ft (361 m)Salt3 Nougat A multipurpose experiment designed to provide data concerning: (1) heat generated from a nuclear explosion; (2) isotopes production; (3) neutron physics; (4) seismic measurements in a salt medium; and (5) design data for developing nuclear devices specifically for peaceful uses.
Sedan July 6, 1962 Nevada Test Site Crater635 ft (194 m)Alluvium104 Storax A excavation experiment in alluvium to determine feasibility of using nuclear explosions for large excavation projects, such as harbors and canals; provide data on crater size, radiological safety, seismic effects, and air blast.
AnacostiaNovember 27, 1962Nevada Test SiteShaft747 ft (227.7 m)Tuff5.2 Storax A device-development experiment to produce heavy elements and provide radiochemical analysis data for the planned Coach Project.
KaweahFebruary 21, 1963Nevada Test SiteShaft745 ft (227.1 m)Alluvium3 Dominic I and II A device-development experiment to produce heavy elements and provide technical data for the planned Coach Project.
TornilloOctober 11, 1963Nevada Test SiteShaft489 ft (149 m)Alluvium0.38 Niblick A device-development experiment to produce a clean nuclear explosive for excavation applications.
KlickitatFebruary 20, 1964Nevada Test SiteShaft1,616 ft (492.6 m)Tuff70 Niblick A device-development experiment to produce an improved nuclear explosive for excavation applications.
AceJune 11, 1964Nevada Test SiteShaft862 ft (262.7 m)Alluvium3 Niblick A device-development experiment to produce an improved nuclear explosive for excavation applications.
DubJune 30, 1964Nevada Test SiteShaft848 ft (258.5 m)Alluvium11.7 Niblick A device-development experiment to study emplacement techniques.
ParOctober 9, 1964Nevada Test SiteShaft1,325 ft (403.9 m)Alluvium38 Whetstone A device-development experiment designed to increase the neutron flux needed for the creation of heavy elements.
HandcarNovember 5, 1964Nevada Test SiteShaft1,332 ft (406 m)Dolomite (carbonate rock)12 Whetstone An emplacement experiment to study the effects of nuclear explosions in carbonate rock.
SulkyNovember 5, 1964Nevada Test SiteShaft90 ft (27.4 m)Basalt0.9 Whetstone An excavation experiment to explore cratering mechanics in hard, dry rock and study dispersion patterns of airborne radionuclides released under these conditions.
PalanquinApril 14, 1965Nevada Test SiteCrater280 ft (85.3 m)Rhyolite4.3 Whetstone An excavation experiment in hard, dry rock to study dispersion patterns of airborne radionuclides released under these conditions.
TemplarMarch 24, 1966Nevada Test SiteShaft495 ft (150.9 m)Tuff0.37 Flintlock To develop an improved nuclear explosive for excavation applications.
VulcanJune 25, 1966Nevada Test SiteShaft1,057 ft (322.2 m)Alluvium25 Flintlock A heavy element device-development test to evaluate neutron flux performance.
SaxonJuly 11, 1966Nevada Test SiteShaft502 ft (153 m)Tuff1.2 Latchkey A device-development experiment to improve nuclear explosives for excavation applications.
SimmsNovember 6, 1966Nevada Test SiteShaft650 ft (198.1 m)Alluvium2.3 Latchkey A device-development experiment to evaluate clean nuclear explosives for excavation applications.
SwitchJune 22, 1967Nevada Test SiteShaft990 ft (301.8 m)Tuff3.1 Latchkey A device-development experiment to evaluate clean nuclear explosives for excavation applications.
MarvelSeptember 21, 1967Nevada Test SiteShaft572 ft (174.3 m)Alluvium2.2 Crosstie An emplacement experiment to investigate underground phenomenology related to emplacement techniques.
Gasbuggy December 10, 1967 Farmington, New Mexico Shaft4,240 ft (1,292 m)Sandstone, gas bearing formation29 Crosstie A gas stimulation experiment to investigate the feasibility of using nuclear explosives to stimulate a low-permeability gas field; first Plowshare joint government-industry nuclear experiment to evaluate an industrial application.
CabrioletJanuary 26, 1968Nevada Test SiteCrater170 ft (51.8 m)Rhyolite2.3 Crosstie An excavation experiment to explore cratering mechanics in hard, dry rock and study dispersion patterns of airborne radionuclides released under these conditions.
BuggyMarch 12, 1968Nevada Test SiteCrater135 ft (41.1 m)Basalt5 at 1.1 each Crosstie A five-detonation excavation experiment to study the effects and phenomenology of nuclear row-charge excavation detonations.
StoddardSeptember 17, 1968Nevada Test SiteShaft1,535 ft (467.9 m)Tuff31 Bowline A device-development experiment to develop clean nuclear explosives for excavation applications.
SchoonerDecember 8, 1968Nevada Test SiteCrater365 ft (111.3 m)Tuff30 Bowline An excavation experiment to study the effects and phenomenology of cratering detonations in hard rock.
Rulison September 10, 1969 Grand Valley, Colorado Shaft8,425 ft (2,567.9 m)Sandstone43 Mandrel A gas stimulation experiment to investigate the feasibility of using nuclear explosives to stimulate a low-permeability gas field; provide engineering data on the use of nuclear explosions for gas stimulation; on changes in gas production and recovery rates; and on techniques to reduce the radioactive contamination to the gas.
Flask -Green, -Yellow, -RedMay 26, 1970Nevada Test SiteShaftGreen, 1736 ft (529.2 m); Yellow, 1,099 ft (335 m); Red, 499 ft (152.1 m)Green, Tuff; Yellow and Red, AlluviumGreen, 105; Yellow, 0.9; Red, 0.4 tons Mandrel A three-detonation device development experiment to develop improved nuclear explosives for excavation applications.
MiniataJuly 8, 1971Nevada Test SiteShaft1,735 ft (528.8 m)Tuff83 Grommet To develop a clean nuclear explosive for excavation applications.
Rio Blanco -1, -2, -3May 17, 1973 Rifle, Colorado Shaft5,840 ft (1,780 m); 6,230 ft (1,898.9 m); 6,690 ft (2,039.1 m)Sandstone, gas-bearing formation3 at 33 each Toggle A gas stimulation experiment to investigate the feasibility of using nuclear explosives to stimulate a low-permeability gas field; develop technology for recovering natural gas from reservoirs with very low permeability.

Non-nuclear tests

In addition to the nuclear tests, Plowshare executed a number of non-nuclear test projects in an attempt to learn more about how the nuclear explosives could best be used. Several of these projects led to practical utility as well as to furthering knowledge about large explosives. These projects included: [2]

Test nameDateLocationTypeDepth of BurialMediumYieldNote
Pre-GnomeFebruary 10–16, 1959Southeast of Carlsbad, New Mexicoseismic experiment (High explosive)1,200 ft (365.8 m), eachBedded salt3.65 tonsThree seismic experiments to measure ground shock for the planned GNOME nuclear test.
TobogganNovember–December 1959 & April–June 1960Nevada Test Siteditching experiment (High explosive, TNT)3 to 20 ft (1 to 6.1 m)Playa (combination of silt and clay)Series of 122 detonations of both linear and point HE chargesStudy ditching characteristics of both-end detonated and multidetonated HE explosives in preparation for nuclear row charge experiments.
HoboFebruary–April 1960Nevada Test Siteseismic experiment (High explosive, TNT)UnknownTuffThree explosions, varying from 500 to 1,000 lb. charges eachTo study rock fracturing and related phenomena produced by contained explosions.
StagecoachMarch 1960Nevada Test Siteexcavation experiment (High explosive, TNT)Shot 1 – 80 ft (24.4 m); Shot 2 17.1 ft (5.2 m); Shot 3 – 34.2 ft (10.4 m)AlluviumThree 40,000 lb. chargesExamine blast, seismic effects and throw out characteristics in preparation for nuclear cratering experiments.
PlowboyMarch–July 1960 Winnfield, Louisiana experimentUnknownUnknownUnknownMining operation to examine high explosive-induced fracturing of salt.
BuckboardJuly–September 1960Nevada Test Siteexcavation experiment (High explosive, TNT)5 to 59.85 ft (1.5 to 18.24 m)BasaltThree 40,000 lb. charges and ten 1,000 lb. chargesEstablish depth of burst curves for underground explosives in a hard rock medium.
PinotAugust 2, 1960Rifle, Coloradotracer experiment (High explosive, nitromethane)610 ft (185.9 m)Oil shaleUnknownTo determine how gases in a confined underground explosion migrate.
Scooter17:17 am, 13 October 1960 [30] Nevada Test Siteexcavation experiment (High explosive, TNT)125 ft (38.1 m)Alluvium500 ton chargesTo study crater dimension, throw out material distribution, ground motion, dust cloud growth, and long-range air blast.

Initially scheduled for July, [31] the shot was delayed due to the accidental use of dummy detonators. As the detonators had to be placed in the center of the charge, organizers were required to dig down to the TNT charge and then use a steam heated mandrel to melt to its center, an extremely hazardous process. [32]

RowboatJune 1961Nevada Test Siterow-charge experiment (High explosive, TNT)VariedAlluvium8 detonations of series of four 278 lb. chargesTo study the effects of depth of burial and charge separation on crater dimensions.
Yo-YoSummer 1961At LRL, near Tracy, Californiasimulated excavation experiment (High explosive)VariedOil-sand mixture100 gm chargesTo develop estimates for the quantities of radiation released to the atmosphere by a cratering detonation.
Pre-Buggy INovember 1962 – February 1963Nevada Test Siterow-charge experiment (High explosive, nitromethane)15 to 21.4 ft (4.57 to 6.52 m) for single-charge detonations; all row-charge detonations at 19.8 ft (6.04 m)AlluviumSix single-charge detonations, four multiple-chargeU.S. Army Engineer Cratering Group Study of row- charge phenomenology and effects in preparation for nuclear row-charge tests.
Pre-Buggy IIJune–August 1963Nevada Test Siterow-charge experiment (High explosive, nitromethane)18.5 to 23 ft (5.64 to 7.0 m)AlluviumFive rows of five 1,000 lb. chargesU.S. Army Corps of Engineers study of row-charge phenomenology and effects in preparation for a nuclear row- charge experiment.
Pre-Schooner IFebruary 1964Nevada Test Sitecratering experiment (High explosive, nitromethane)42 to 66 ft (18.3 to 20.1 m)BasaltFour 40,000 lb. spherical chargesU.S. Army Engineer Nuclear Cratering Group study of basic cratering phenomenology in preparation for nuclear cratering experiments.
DugoutJune 24, 1964Nevada Test Siterow charge experiment (High explosive, nitromethane)59 ft (18.0 m)Basaltsimultaneous detonation of a row of five 20 ton charges placed 45 feet (13.7 m) apart (1 crater radius)Study fundamental processes involved in row charge excavating dense, hard rock.
Pre-Schooner IISeptember 30, 1965Owyhee County, southwestern Idahocratering experiment (high explosive, nitromethane)71 ft (21.6 m)Rhyolite85 ton chargeObtain data for proposed Schooner nuclear cratering test, particularly cavity growth, seismic effects, and air blast.
Pre-Gondola I, II, IIIOctober 1966 – October 1969Near Fort Peck Reservoir, Valley County, Montanaexcavation experiments (High explosive, nitromethane)VariedSaturated Bearclaw shalePre-Gondola I, four 20-ton charges; Pre-Gondola II, row of five charges totaling 140 tons; Pre-Gondola III, Phase I, three rows of seven one-ton charges; Phase II, one row of seven 30- ton charges; Phase III, one row of five charges varying from five to 35 tons and totaling 70 tonsU.S. Army Corps of Engineers project to provide seismic calibration test data and cratering characteristics for excavation projects.
TugboatNovember 1969 – December 1970 Kawaihae Bay, Hawaii excavation experiment (High explosive, TNT)4–8 ft (1.2–2.4 m)WaterUnknownTo study excavation of a small boat harbor in a weak coral medium.
TrinidadJuly–December 1970 Trinidad, Colorado (six miles west)excavation experiment (High explosive)UnknownSandstone/shaleUnknownFour series of row-charge detonations to study excavation designs.
Old ReliableAugust 1971 – March 1972Galiuro Mountains, 44 miles northeast Tucson, Arizonafracturing experiment (High explosive, ammonium nitrate)UnknownUnknown2,002 tonsTo promote fracturing and in situ leaching of copper ore.

Proposed nuclear projects

A number of projects were proposed and some planning accomplished, but were not followed through on. A list of these is given here: [2]

NameDateLocationPurpose
Oxcart1959Nevada Test SiteInvestigate excavation efficiency as a function of yield and depth in planning for Project Chariot.
Oilsand 1959Athabasca, CanadaStudy the feasibility of oil recovery using a nuclear explosive detonation in the Athabascan tar sands.
Oil Shale1959Not determinedStudy a nuclear detonation to shatter an oil shale formation to extract oil.
Ditchdigger1961Not determinedA deeply buried clean nuclear explosive detonation excavation experiment
Coach1963Carlsbad, NM (GNOME site)Produce neutron-rich isotopes of known trans- plutonium elements.
Phaeton1963Not determinedScaling experiment.
Carryall 1963Bristol Mountains Mojave Desert, CARow-charge excavation experiment to cut through the Bristol Mountains for realignment of the Santa Fe railroad and a new highway I-40.
Dogsled1964Colorado Plateau CO or AZStudy cratering characteristics in dry sandstone; study ground shock and air blast intensities.
Tennessee/ Tombigee Waterway 1964Northeast MississippiExcavation of three miles of a divide cut through low hills; connect Tennessee and Tombigee rivers; dig 250-mile long canal.
Interoceanic Sea-Level Canal Study1965–70Pan-American Isthmus (Central America)Commission appointed in 1965 to conduct feasibility studies of several sea-level routes for an Atlantic- Pacific interoceanic canal. Two routes were in Panama and one in northwestern Colombia. The 1970 final report recommended, in part, that no current U.S. canal policy should be made on the basis that nuclear excavation technology will be available for canal construction. AEC deferred in making any decision.
FlivverMar. 1966Nevada Test SiteA low-yield cratering detonation to study basic cratering phenomenology.
Dragon TrailDec. 1966Rio Blanco County, CONatural gas stimulation experiment; different geological characteristics than either GASBUGGY or RULISON; geological study completed.
Ketch Aug. 1967Renovo, PA (12 miles SW)Create a large chimney of broken rock with void space to store natural gas under high pressure.
BroncoOct. 1967Rio Blanco County, COBreak oil shale deposits for in situ retorting; exploratory core holes drilled.
SloopOct. 1967 – 1968Safford, AZ (11 miles NE)Fracturing copper ore; extract copper by in situ leaching methods; feasibility study completed.
Thunderbird 1967Gillette, WY (20 miles W)Coal gasification; fracture rock-containing coal and in situ combustion of the coal would produce low-Btu gas and other products.
Galley1967–68Not determinedA high-yield row charge in hard rock under terrain of varying elevations.
Aquarius1968–70Clear Creek or San Simon, AZWater resource management; dam construction, subsurface storage, purification; aquifer modification.
Wagon WheelJan. 1968  1974Pinedale, WY (19 miles S)Natural gas stimulation; study stimulation at various depths; an exploratory hole and two hydrological wells were drilled.
WaspJul. 1969 – 1974Pinedale, WY (24 miles NW)Natural gas stimulation; meteorological observations taken.
Utah1969near Ouray, UTOil shale maturation; exploratory hole drilled.
Sturtevant1969Nevada Test SiteCratering experiment to extend excavation information on yields and rock types relevant to the trans-Isthmian canal.
Australian Harbor Project1969 Cape Keraudren (NW coast of Australia)First discussed with U.S. officials in 1962, the U.S. formally agreed to participate in a joint feasibility study with the Australian government in early 1969 for using nuclear explosives to construct a harbor. The project was stopped in March 1969 when it was determined that there was an insufficient economic basis to proceed.
Yawl1969–70Nevada Test SiteCratering experiment to extend excavation information on yields and rock types relevant to the trans-Isthmian canal.
Geothermal Power Plant1971Not determinedGeothermal resource experiment; fracturing would allow fluids circulated in fracture zones to be converted to steam to generate electricity. [2]
Travois 1970Various sites in California, New Mexico, Idaho and OregonSeveral nuclear quarrying projects to create rock fill for dam projects. [33] [34]

See also

Notes

  1. Test shot Anacostia resulted in Curium-250 being discovered.

Related Research Articles

<span class="mw-page-title-main">Operation Crosstie</span> Series of 1960s US nuclear tests

Operation Crosstie was a series of 48 nuclear tests conducted by the United States in 1967–1968 at the Nevada Test Site. These tests followed the Operation Latchkey series and preceded the Operation Bowline series.

<span class="mw-page-title-main">Nuclear weapons testing</span> Controlled detonation of nuclear weapons for scientific or political purposes

Nuclear weapons tests are experiments carried out to determine the performance, yield, and effects of nuclear weapons. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by different conditions, and how personnel, structures, and equipment are affected when subjected to nuclear explosions. However, nuclear testing has often been used as an indicator of scientific and military strength. Many tests have been overtly political in their intention; most nuclear weapons states publicly declared their nuclear status through a nuclear test.

<span class="mw-page-title-main">Project Chariot</span> Proposal to construct an artificial harbor at Cape Thompson, Alaska using nuclear devices

Project Chariot was a 1958 United States Atomic Energy Commission proposal to construct an artificial harbor at Cape Thompson on the North Slope of the U.S. state of Alaska by burying and detonating a string of nuclear devices.

<span class="mw-page-title-main">Operation Upshot–Knothole</span> Series of 1950s US nuclear tests

Operation Upshot–Knothole was a series of eleven nuclear test shots conducted in 1953 at the Nevada Test Site. It followed Operation Ivy and preceded Operation Castle.

<span class="mw-page-title-main">Operation Teapot</span> Series of 1950s US nuclear tests

Operation Teapot was a series of 14 nuclear test explosions conducted at the Nevada Test Site in the first half of 1955. It was preceded by Operation Castle, and followed by Operation Wigwam. Wigwam was, administratively, a part of Teapot, but it is usually treated as a class of its own. The aims of the operation were to establish military tactics for ground forces on a nuclear battlefield and to improve the nuclear weapons used for strategic delivery.

<span class="mw-page-title-main">Chagan (nuclear test)</span> 1965 Soviet underground nuclear test

Chagan (Чага́н) was a Soviet underground nuclear test conducted at the Semipalatinsk Test Site on January 15, 1965.

<span class="mw-page-title-main">Sedan (nuclear test)</span> 1962 underground nuclear test at the Nevada Test Site, United States

Storax Sedan was a shallow underground nuclear test conducted in Area 10 of Yucca Flat at the Nevada National Security Site on July 6, 1962, as part of Operation Plowshare, a program to investigate the use of nuclear weapons for mining, cratering, and other civilian purposes. The radioactive fallout from the test contaminated more US residents than any other nuclear test. The Sedan Crater is the largest human-made crater in the United States and is listed on the National Register of Historic Places.

Peaceful nuclear explosions (PNEs) are nuclear explosions conducted for non-military purposes. Proposed uses include excavation for the building of canals and harbours, electrical generation, the use of nuclear explosions to drive spacecraft, and as a form of wide-area fracking. PNEs were an area of some research from the late 1950s into the 1980s, primarily in the United States and Soviet Union.

Nuclear Explosions for the National Economy was a Soviet program to investigate peaceful nuclear explosions (PNEs). It was analogous to the United States program Operation Plowshare.

<span class="mw-page-title-main">Nuclear explosion</span> Explosion from fission or fusion reaction

A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device. Nuclear explosions are used in nuclear weapons and nuclear testing.

<span class="mw-page-title-main">2006 North Korean nuclear test</span> 2006 test detonation of a nuclear weapon in North Korea

The 2006 North Korean nuclear test was the detonation of a nuclear device conducted by North Korea on October 9, 2006.

<span class="mw-page-title-main">Underground nuclear weapons testing</span> Test detonation of nuclear weapons underground

Underground nuclear testing is the test detonation of nuclear weapons that is performed underground. When the device being tested is buried at sufficient depth, the nuclear explosion may be contained, with no release of radioactive materials to the atmosphere.

<span class="mw-page-title-main">Project Gnome (nuclear test)</span> 1961 nuclear test explosion in New Mexico, United States

Project Gnome was the first nuclear test of Project Plowshare and was the first continental nuclear weapon test since Trinity to be conducted outside of the Nevada Test Site, and the second test in the state of New Mexico after Trinity. It was tested in southeastern New Mexico on December 10, 1961, approximately 40 km southeast of Carlsbad, New Mexico.

<span class="mw-page-title-main">Operation Redwing</span> Series of 1950s US nuclear tests

Operation Redwing was a United States series of 17 nuclear test detonations from May to July 1956. They were conducted at Bikini and Enewetak atolls by Joint Task Force 7 (JTF7). The entire operation followed Project 56 and preceded Project 57. The primary intention was to test new, second-generation thermonuclear weapons. Also tested were fission devices intended to be used as primaries for thermonuclear weapons, and small tactical weapons for air defense. Redwing demonstrated the first United States airdrop of a deliverable hydrogen bomb during test Cherokee. Because the yields for many tests at Operation Castle in 1954 were dramatically higher than predictions, Redwing was conducted using an "energy budget": There were limits to the total amount of energy released, and the amount of fission yield was also strictly controlled. Fission, primarily "fast" fission of the natural uranium tamper surrounding the fusion capsule, greatly increases the yield of thermonuclear devices, and constitutes the great majority of the fallout, as nuclear fusion is a relatively clean reaction.

Project Oilsand, also known as Project Oilsands, and originally known as Project Cauldron, was a 1958 proposal to exploit the Athabasca Oil Sands in Alberta via the underground detonation of up to 100 nuclear explosives; hypothetically, the heat and pressure created by an underground detonation would boil the bitumen deposits, reducing their viscosity to the point that standard oilfield techniques could be used.

<span class="mw-page-title-main">Project Gasbuggy</span> 1967 nuclear test explosion in New Mexico, United States

Project Gasbuggy was an underground nuclear detonation carried out by the United States Atomic Energy Commission on December 10, 1967 in rural northern New Mexico. It was part of Operation Plowshare, a program designed to find peaceful uses for nuclear explosions.

<span class="mw-page-title-main">Project Rio Blanco</span>

Project Rio Blanco was an underground nuclear test that took place on May 17, 1973 in Rio Blanco County, Colorado, approximately 36 miles (58 km) northwest of Rifle.

Project Carryall was a 1963 United States Atomic Energy Commission (AEC) proposal to use nuclear explosives to excavate a path for Interstate 40 (I-40) and the Atchison, Topeka and Santa Fe Railway (AT&SF) through the Bristol Mountains of southern California. The project was proposed as a component of Project Plowshare, which sought ways to use nuclear devices in public works and industrial development projects.

Project Ketch was a 1964 United States Atomic Energy Commission (AEC) proposal to use nuclear explosives to excavate a natural gas storage reservoir in Pennsylvania. The project was proposed as a component of Project Plowshare, which sought ways to use nuclear devices in public works and industrial development projects. The project was the only Plowshare project proposed for the northeastern United States.

References

  1. Weinersmith, Zach (2017). 10 Emerging Technologies That'll Improve and/or ruin everything. p. 154. ISBN   978-0399563829.
  2. 1 2 3 4 5 6 7 "Executive Summary: Plowshare Program" (PDF). US Department of Energy, Office of Science and Technical Information. Retrieved August 17, 2016.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. "Archived copy". www.ociw.edu. Archived from the original on February 10, 2006. Retrieved January 12, 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  4. "Carnegie Observatories Astrophysics Series". February 10, 2006. Archived from the original on February 10, 2006.
  5. "Keyah Math – Numerical Solutions for Culturally Diverse Geology". keyah.asu.edu.
  6. 1 2 3 4 5 6 7 8 9 Sovacool, Benjamin K (2011), Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy, World Scientific, pp. 171–2
  7. Jacobsen, Sally (May 1972). "Turning up the Gas: AEC Prepares Another Nuclear Gas Stimulation Shot". Bulletin of the Atomic Scientists. 28 (5): 37. doi:10.1080/00963402.1972.11457935. ISSN   0096-3402.
  8. Stone, Oliver and Kuznick, Peter, The Untold History of the United States (Gallery Books, 2012), pp. 283–284 [ ISBN missing ]
  9. Hewlett, Richard G.; Holl, Jack M. (1989). Atoms for Peace and War, 1953–1961: Eisenhower and the Atomic Energy Commission. Berkeley and Los Angeles, California: University of California Press. p. 529. ISBN   978-0520060180. highlight the peaceful applications of nuclear explosive devices and thereby create a climate of world opinion that is more favorable to weapons development and tests
  10. "semiannual report to Congress in January 1958". Other mentions of Strauss making statements in Feb 1958 or hearings being held are on p 447, and 474 it seems. p. 474's quotation: Senate Subcommittee of the Committee on Foreign Relations, Hearings on Control and Reduction of Armaments, Feb. 28 – April 17, 1958, Washington: Government Printing Office, 1958) pp. 1336–1364.
  11. O'Neill, Dan (2007) [1995], The Firecracker Boys: H-Bombs, Inupiat Eskimos, and the Roots of the Environmental Movement , New York: Basic Books, ISBN   978-0-465-00348-8
  12. Fry, J. G.; Stane, R. A.; Crutchfield Jr, W. H. (1964). "Preliminary Design Studies In A Nuclear Excavation — Project Carryall". Highway Research Record. Highway Research Board (50): 32–39. Retrieved August 17, 2016.
  13. Maccabee, H. D. (July 1, 1963). "Use of Nuclear Explosives for Excavation of Sea-Level Canal Across the Negev Desert" (PDF). United States Office of Scientific and Technical Information. Retrieved April 2, 2021.
  14. Guenot, Marianne (March 25, 2021). "The US had a plan in the 1960s to blast an alternative Suez Canal through Israel using 520 nuclear bombs". Insider. Retrieved April 2, 2021.
  15. Lombard, DB; Carpenter, HC (1967). "Recovering Oil by Retorting a Nuclear Chimney in Oil Shale". Journal of Petroleum Technology. Society of Petroleum Engineers. 19 (6): 727–734. doi: 10.2118/1669-PA .
  16. "Austral Oil, Co., Inc". Harvard Business School. Retrieved November 23, 2014.
  17. 1 2 "Environment: Project Dubious". Time magazine. April 9, 1973. Archived from the original on December 14, 2008. Retrieved August 17, 2016.
  18. Jaffe, Mark (July 2, 2009). "Colorado drilling rigs closing in on '60s nuke site". The Denver Post. Retrieved January 30, 2010.
  19. ""Gasbuggy" tests Nuclear Fracking – American Oil & Gas Historical Society". December 4, 2015.
  20. "Innovation Alberta: Article Details". August 24, 2007. Archived from the original on August 24, 2007.
  21. "Plowshare Program Executive Summary, pp. 4–5" (PDF).
  22. "elmada.com/wagon: Nuclear Stimulation Projects". July 6, 2004. Archived from the original on July 6, 2004.
  23. "The Soviet Program for Peaceful Uses of Nuclear Explosions". www.bibliotecapleyades.net.
  24. "Milo D. Nordyke, 2000. peaceful nuclear explosions (PNEs) in the Soviet Union over the period 1965 to 1988" (PDF). Archived from the original (PDF) on December 23, 2016. Retrieved July 22, 2016.
  25. The Soviet Program for Peaceful Uses of Nuclear Explosions by Milo D. Nordyke. Science & Global Security, 1998, Volume 7, pp. 1–117
  26. 4.5 Thermonuclear Weapon Designs and Later Subsections. Nuclearweaponarchive.org. Retrieved on May 1, 2011.
  27. Operation Hardtack I. Nuclearweaponarchive.org. Retrieved on May 1, 2011.
  28. Operation Redwing. Nuclearweaponarchive.org. Retrieved on May 1, 2011.
  29. "Restricted Data Declassification Decisions 1946 to the Present, RDD-7, January 1, 2001" . Retrieved August 17, 2016.
  30. "Press Release, Subject: A Charge of 500 Tons of Chemical High Explosive (Non-Nuclear) was Detonated at 7:17 a.m. Today at the NTS (Plowshare)" (Press release). Atomic Energy Commission. October 13, 1960.
  31. TWX to OBrien et al, Subject: High Explosive Scooter Detonation has been Delayed (Report). Atomic Energy Commission. July 31, 1960.
  32. Carothers, J (June 1995). Caging the dragon: the containment of underground nuclear explosions (Report). USDOE Nevada Operations Office, Las Vegas, NV (United States); Defense Nuclear Agency, Alexandria, VA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). pp. 65–68. OSTI   524871. DOE/NV-388; DNA-TR-95-74; DE98000017.
  33. Beck, Colleen M.; Edwards, Susan R.; King, Maureen L. (September 1, 2011). "Project Travois". The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities (Report). Vol. 1. pp. 3–259. doi:10.2172/1046575.
  34. Yoman, John (May 1970). "Summary of Nuclear-Excavation Applications". Symposium on Engineering with Nuclear Explosives (PDF) (Report). pp. 267–268.

Further reading