The Mark 39 nuclear bomb and W39 nuclear warhead were versions of an American thermonuclear weapon, which were in service from 1957 to 1966.
The Mark 39 design was a thermonuclear bomb and had a yield of 3.8 megatons. [1] It weighed 6,500–6,750 pounds (2,950–3,060 kilograms), [2] and was about 11 feet, 8 inches long (3.556 meters) [2] with a diameter of 35 inches (89 cm). [2] The design is an improved Mark 15 nuclear bomb design (the TX-15-X3 design and Mark 39 Mod 0 were the same design). The Mark 15 was the first lightweight US thermonuclear bomb.
The W39 warhead was 35 inches (89 cm) in diameter and 106 inches (270 cm) long, with a weight of 6,230 pounds (2,830 kg) to 6,400 pounds (2,900 kg). It was essentially identical to the Mark 39 bomb, but lacked its parachute, fins, and "false" nose. It was used on the SM-62 Snark missile, PGM-11 Redstone short-range ballistic missile, and in the B-58 Hustler weapons pod. It was designated as a possible warhead to use in the SM-64 Navaho missile prior to the latter's cancellation. A lower-yield variant of the Mark 39 was developed for use with the Redstone missile. Sources indicated it may have been as low as 425 kilotons, or as high as 500 kilotons. [3] [4]
A total of 700 Mark 39 bombs (of three "mod" variants) were produced between February 1957 and March 1959. Retirement of the Mark 39 began in January 1962 and concluded in November 1966. 60 W39 warheads were produced for the Redstone missile and stockpiled between 1958 and 1963, and 30 W39 warheads were produced for the Snark missile in 1958 and retired between August 1962 and September 1965. [5]
The Mark 39 Mod 0 bomb was an offshoot of proposals to improve the Mark 15 nuclear bomb. The Mk 39 Mod 0 differed from the Mark 15 in that it used contact fuzes instead of proximity fuzes, and it had thermal batteries instead of nickel-cadmium batteries. It also weighed about 1,000 pounds (450 kg) less. It had a true contact-burst capability along with a barometric fuze option for airbursts that could be chosen in flight (with the contact-burst serving as a backup capability in that case). It had an in-flight insertion (IFI) system. [6]
The Mark 39 Mod 1 notably used a boosted, sealed-pit core, eliminating the IFI system. This "reduced weapon weight, lowered power requirements, and resulted in the use of smaller and lighter batteries." It also was adaptable into a warhead (the W39) which would eventually be adaptable to a B-58 Hustler external weapons pod, the SM-62 Snark missile, and the PGM-11 Redstone missile. As the weapon now always contained all components needed to fire it, several safety systems were added to avoid inadvertent detonation, including safing pins that would hold in the arming rods, arming rods that required considerable force to pull, and a high-voltage safing switch to prevent detonation in the event that fire or extreme heat igniting the high-voltage batteries. [7]
The pit of the "primary" stage of both Mark 39 Mods 1 and 2 was entirely made of enriched uranium ("all-oralloy") and known as VIPER II. Test "Lacrosse" of Operation Redwing was of this primary system and yielded 40 kilotons. [8]
The Mark 39 Mod 2 was initially pursued with the goal of providing the Mod 1 with a low-level (laydown) release capability, where the weapon would "detonate some time after the weapon struck the target and came to rest". Work was initially done on creating a new parachute system, and the weapon system was initially called to Mark 39 Mod 1 Big Tail. Difficulties arose that necessitated reworking the parachute arrangement as well as developing a different contact fuze (as the original piezoelectric crystals would not reliably operate at the relatively low impact speeds contemplated). A new tail system was developed for the weapon, and it became re-designated as the Improved Big Tail, or the Mark 39 Mod 2 bomb. The new tail used a two-stage parachute: first a 28-foot diameter chute, then a 100-foot diameter chute. [9] Mark 39 Mod 1 weapons could be converted to Mark 39 Mod 2 weapons by changing their fuzing hardware and adding the large tail system. The Mark 39 Mod 2 fuzing system only permitted a contact burst. [10]
The original Mark 39 Mod 2 used an MC-772 Arm/Safe switch to keep it from firing inadvertently should it be accidentally dropped from an aircraft at sufficient height and under the right circumstances to otherwise start its arming sequence. This would be engaged from the cockpit by the a T-380 Readiness Switch. In January 1960, a modification to the Mark 39 known as Alt 197 was approved which would replace the switch with the MC-1288 Arm/Safe switch, which would additionally prevent the weapon's low-voltage thermal batteries from charging if the Arm/Safe switch was in the "Safe" position, as an additional safety measure. The weapons involved in the 1961 Goldsboro B-52 crash a year later, did not have Alt 197 implemented. [11] A consequence of the accident was that all Mark 39 Mod 2 weapons lacking Alt 197 were "red-lined" and removed from deployment until the change could be enacted. [12] In the 1961 Yuba City B-52 crash a few weeks later, the Mark 39 Mod 2 bombs involved did have Alt 197 applied to them, but the low-voltage thermal batteries were nonetheless activated in one of the weapons despite the MC-1288 Arm/Safe switch being in the "Safe" position. According to the Defense Atomic Support Agency, "post-mortem analysis indicates a probable cause of the activation of the low voltage thermal batteries of the one weapon was a cable short which permitted the energy from the MC-845 Bisch Generator to bypass the MC-1288 Arm/Safe Switch. It is suspected that the MC-845 pulse resulted from the mechanical shock sustained upon impact and was passed to the MC-640 [thermal batteries] through one of the possible random short circuits." [13]
The Mark 39 bomb is known to have been involved in at least four serious "Broken Arrow" nuclear accidents between 1958 and 1961.
On November 4, 1958, a B-47 with a Mark 39 Mod 1 (sealed pit) weapon on board crashed and exploded shortly after takeoff (for a training mission) from Dyess Air Force Base, near Abilene, Texas. The high-explosives in the weapon's primary detonated, dispersing depleted uranium, highly enriched uranium, and lead. [14]
On July 6, 1959, a C-124 crashed on takeoff from Barksdale Air Force Base in Louisiana, with three Mark 39 Mod 2 weapons aboard. One weapon was completely destroyed by the fire, the other two were disassembled and salvaged. There was no detonation of high explosives in any of the weapons. [15]
On January 24, 1961, two Mark 39 Mod 2 nuclear bombs that were carried by a B-52 Stratofortress which broke up in the air and crashed near Goldsboro, North Carolina. The bombs were flung from the aircraft in such a way that initiated their firing sequences. One bomb left the plane at a high-enough altitude, and with a functioning parachute, allowing the firing sequence was able to go through every stage up to the Arm/Safe Switch, which functioned as intended and prevented a full detonation. The other left the plane at a lower altitude, and its parachute failed to open, and its firing sequence failed to prepare the bomb to arm even prior to the Arm/Safe Switch, and the weapon broke up upon contact with the ground prior to its fuzing system being armed. When its Arm/Safe Switch was recovered, it indicated visually that it was in the "Arm" position. However, further inspection found that this was only superficial (it was not actually electrically "armed"), and related to damage the switch sustained upon impact. The thermonuclear "secondary" of the second weapon was never recovered. The high-explosives in neither bomb detonated. The Goldsboro crash is considered by many, including safety engineers at Sandia National Laboratories, to be one of the "closest" calls for an accidental nuclear detonation, as the Arm/Safe Switch in the Mark 39 was known to be capable of accidental engagement. [16]
On March 14, 1961 a B-52 carrying two Mark 39 Mod 2 (Alt 197) weapons crashed 15 miles (24 km) west of Yuba City, California. One of the weapons was relatively intact. The other had separated from the aircraft after impact, tumbled several times, and had its internal components ("the primary and most of its secondary") thrown out of its ballistic case. The high explosives did not detonate for either weapon. [15]
A Mark 39 Mod 2 casing is on display in the Cold War Gallery of the National Museum of the United States Air Force in Dayton, Ohio. The bomb was received from the National Atomic Museum at Kirtland Air Force Base, N.M., in 1993.
Yellow Sun was the first British operational high-yield strategic nuclear weapon warhead. The name refers only to the outer casing; the warhead was known as "Green Grass" in Yellow Sun Mk.1 and "Red Snow" in Yellow Sun Mk.2.
The W25 was a small nuclear warhead that was developed by the Los Alamos Scientific Laboratory for air-defense use. It was a fission device with a nominal yield of 1.7 kt.
The B61 nuclear bomb is the primary thermonuclear gravity bomb in the United States Enduring Stockpile following the end of the Cold War. It is a low-to-intermediate yield strategic and tactical nuclear weapon featuring a two-stage radiation implosion design.
The Mk/B53 was a high-yield bunker buster thermonuclear weapon developed by the United States during the Cold War. Deployed on Strategic Air Command bombers, the B53, with a yield of 9 megatons, was the most powerful weapon in the U.S. nuclear arsenal after the last B41 nuclear bombs were retired in 1976.
The B28, originally Mark 28, was a thermonuclear bomb carried by U.S. tactical fighter bombers, attack aircraft and bomber aircraft. From 1962 to 1972 under the NATO nuclear weapons sharing program, American B28s also equipped six Europe-based Canadian CF-104 squadrons known as the RCAF Nuclear Strike Force. It was also supplied for delivery by UK-based Royal Air Force Valiant and Canberra aircraft assigned to NATO under the command of SACEUR. In addition, certain U.S. Navy carrier based attack aircraft such as the A3D Skywarrior, A4D Skyhawk, and A3J Vigilante were equipped to carry the B28.
The B-41 was a thermonuclear weapon deployed by the United States Strategic Air Command in the early 1960s. It was the most powerful nuclear bomb ever developed by the United States, with a maximum yield of 25 megatons of TNT. A top secret document, states “The US has stockpiled bombs of 9 MT and 23 MT...” which would likely be referring to the B-41's actual yield(s). The B-41 was the only three-stage thermonuclear weapon fielded by the U.S.
Laydown delivery is a mode of delivery found in some nuclear gravity bombs: the bomb's descent to the target is slowed by parachute so that it lands on the ground without detonating. The bomb then detonates by timer some time later. Laydown delivery requires the weapon to be reinforced so that it can survive the force of impact.
The W54 was a tactical nuclear warhead developed by the United States in the late 1950s. The weapon is notable for being the smallest nuclear weapon in both weight and yield to have entered US service. It was a compact implosion device containing plutonium-239 as its fissile material, and in its various versions and mods it had a yield of 10 to 1,000 tons of TNT.
Mark 7 "Thor" was the First tactical fission bomb adopted by US armed forces. It was also the first weapon to be delivered using the toss method with the help of the low-altitude bombing system (LABS). The weapon was tested in Operation Buster-Jangle. To facilitate external carry by fighter-bomber aircraft, Mark 7 was fitted with retractable stabilizer fins. The Mark 7 warhead (W7) also formed the basis of the 30.5 inches (775 mm) BOAR rocket, the Mark 90 Betty nuclear depth charge, MGR-1 Honest John rocket, and MGM-5 Corporal ballistic missile. It was also supplied for delivery by Royal Air Force Canberra aircraft assigned to NATO in Germany under the command of SACEUR. This was done under the auspices of Project E, an agreement between the United States and the UK on the RAF carriage of US nuclear weapons. In UK use it was designated 1,650 lb. H.E. M.C. The Mark 7 was in service from 1952 to 1967(8) with 1700–1800 having been built.
The W50 was an American thermonuclear warhead deployed on the MGM-31 Pershing theater ballistic missile. Initially developed for the LIM-49 Nike Zeus anti-ballistic missile, this application was cancelled before deployment. The W50 was developed by Los Alamos National Laboratory. The W50 was manufactured from 1963 through 1965, with a total of 280 being produced. They were retired from service starting in 1973 with the last units retired in 1991.
The W87 is an American thermonuclear missile warhead formerly deployed on the LGM-118A Peacekeeper ("MX") ICBM. 50 MX missiles were built, each carrying up to 10 W87 warheads in multiple independently targetable reentry vehicles (MIRV), and were deployed from 1986 to 2005. Starting in 2007, 250 of the W87 warheads from retired Peacekeeper missiles were retrofitted onto much older Minuteman III missiles, with one warhead per missile.
The W84 is an American thermonuclear warhead initially designed for use on the BGM-109G Gryphon Ground Launched Cruise Missile (GLCM).
The W49 was an American thermonuclear warhead, used on the Thor, Atlas, Jupiter, and Titan I ballistic missile systems. W49 warheads were manufactured starting in 1958 and were in service until 1965, with a few warheads being retained until 1975.
The W58 was an American thermonuclear warhead used on the Polaris A-3 submarine-launched ballistic missile. Three W58 warheads were fitted as multiple warheads on each Polaris A-3 missile.
The W59 was an American thermonuclear warhead used on some Minuteman I ICBM missiles from 1962 to 1969, and planned to be used on the cancelled GAM-87 Skybolt air-launched ballistic missile.
The B61 Family is a series of nuclear weapons based on the B61 nuclear bomb.
The Mark 15 nuclear bomb, or Mk-15, was a 1950s American thermonuclear bomb, the first relatively lightweight thermonuclear bomb created by the United States.
On 14 March 1961 an aircraft accident occurred near Yuba City, California. A United States Air Force B-52F-70-BW Stratofortress bomber, AF Serial No. 57-0166, c/n 464155, carrying two nuclear weapons departed from Mather Air Force Base near Sacramento. According to the official Air Force report, the aircraft experienced an uncontrolled decompression that required it to descend to 10,000 feet (3,000 m) in order to lower the cabin altitude. Increased fuel consumption caused by having to fly at lower altitude, combined with the inability to rendezvous with a tanker in time caused the aircraft to run out of fuel. The aircrew ejected safely, and the now uncrewed aircraft crashed 15 miles (24 km) west of Yuba City, tearing the nuclear weapons from the aircraft on impact. The weapons did not detonate, as their safety devices worked properly. A fireman was killed and several others injured in a road accident while en route to the accident scene.
The 1961 Goldsboro B-52 crash was an accident that occurred near Goldsboro, North Carolina, United States, on 24 January 1961. A Boeing B-52 Stratofortress carrying two 3.8-megaton Mark 39 nuclear bombs broke up in mid-air, dropping its nuclear payload in the process. The pilot in command, Walter Scott Tulloch, ordered the crew to eject at 9,000 ft (2,700 m). Five crewmen successfully ejected or bailed out of the aircraft and landed safely; another ejected, but did not survive the landing, and two died in the crash. Information declassified since 2013 has shown that one of the bombs was judged by nuclear weapons engineers at the time to have been only one safety switch away from detonation, and that it was "credible" to imagine conditions under which it could have detonated.