Magnetized target fusion

Last updated

Magnetized Target Fusion (MTF) is a fusion power concept that combines features of magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). Like the magnetic approach, the fusion fuel is confined at lower density by magnetic fields while it is heated into a plasma. As with the inertial approach, fusion is initiated by rapidly squeezing the target to greatly increase fuel density and temperature. Although the resulting density is far lower than in ICF, it is thought that the combination of longer confinement times and better heat retention will let MTF operate, yet be easier to build. The term magneto-inertial fusion (MIF) is similar, but encompasses a wider variety of arrangements. The two terms are often applied interchangeably to experiments.

Contents

Fusion concepts

In fusion, lighter atoms are fused to make heavier atoms. The easiest fuels to do this with are isotopes of hydrogen. [1] Generally these reactions take place inside a plasma. A plasma is a heated gas, where all the electrons have been stripped away; the gas has been fully ionized. The ions are positively charged, so they repel each other due to the electrostatic force. Fusion occurs when two ions collide at high energy, allowing the strong force to overcome the electrostatic force at a short distance. The amount of energy that needs to be applied to force the nuclei together is named the Coulomb barrier or fusion barrier energy. For fusion to occur in bulk plasma, it must be heated to tens of millions of degrees and compressed at high pressures, for a sufficient amount of time. Together, this is termed the triple product (see Lawson criterion). [2] Fusion research focuses on reaching the highest triple product possible.

Magnetic fusion works to heat a dilute plasma (1014 ions per cm3) to high temperatures, around 20 keV (~200 million C). Ambient air is about 100,000 times denser. To make a practical reactor at these temperatures, the fuel must be confined for long periods of time, on the order of 1 second. The ITER tokamak design is currently being built to test the magnetic approach with pulse lengths up to 20 minutes.

Inertial fusion attempts to produce much higher densities, 1025 ions per cubic cm, about 100 times the density of lead. This causes the reactions to occur extremely quickly (~1 nanosecond). Confinement is not needed; although the heat and particles created by the reactions will cause the plasma to explode outward, the speed this occurs is slower than the fusion reactions.

As of 2018, both of these methods of nuclear fusion are nearing net energy (Q>1) levels after many decades of research, but remain far from practical energy-producing devices.

Approach

While MCF and ICF attack the Lawson criterion problem from different directions, MTF attempts to work between the two. MTF aims for a plasma density of 1019 cm−3, intermediate between MCF (1014 cm−3) and ICF (1025 cm−3) [3] At this density, confinement times must be on the order of 1 µs, again intermediate between the other two. MTF uses magnetic fields to slow down plasma losses, and inertial compression is used to heat the plasma. [3]

In general terms, MTF is an inertial method. Density is increased through a pulsed operation that compresses the fuel, heating the plasma, just as compression heats an ordinary gas. In traditional ICF, more energy is added through the lasers that compress the target, but that energy leaks away through multiple channels. MTF employs a magnetic field that is created before compression that confines and insulates fuel so less energy is lost. The result, compared to ICF, is a somewhat-dense, somewhat-hot fuel mass that undergoes fusion at a medium reaction rate, so it only must be confined for a medium length of time.

As the fuel pellet is compressed, the heat and pressure in the plasma grow. The rate of collapse is generally linear, but the pressure is based on the volume, which increases with the cube of the compression. As some point the pressure is enough to stop and then reverse the collapse. The mass of the metal liner around the fuel means this process takes some time to occur. The MTF concept is based on having this dwell time be long enough for the fusion processes to take place. [4]

MTF has advantages over both ICF and low-density plasma fusion. Its energy inputs are relatively efficient and inexpensive, whereas ICF demands specialized high-performance lasers that currently offer low efficiency. The cost and complexity of these lasers, termed "drivers", is so great that traditional ICF methods remain impractical for commercial energy production. Likewise, although MTF needs magnetic confinement to stabilize and insulate the fuel while it is being compressed, the needed confinement time is thousands of times less than for MCF. Confinement times of the order needed for MTF were demonstrated in MCF experiments years ago.

The densities, temperatures and confinement times needed by MTF are well within the current state of the art and have been repeatedly demonstrated. [5] Los Alamos National Laboratory has referred to the concept as a "low cost path to fusion".

Devices

FRX-L

In the pioneering experiment, Los Alamos National Laboratory's FRX-L, [6] a plasma is first created at low density by transformer-coupling an electric current through a gas inside a quartz tube (generally a non-fuel gas for testing purposes). This heats the plasma to about 200 eV (~2.3 million degrees). External magnets confine fuel within the tube. Plasmas are electrically conducting, allowing a current to pass through them. This current, generates a magnetic field that interacts with the current. The plasma is arranged so that the fields and current stabilize within the plasma once it is set up, self-confining the plasma. FRX-L uses the field-reversed configuration for this purpose. Since the temperature and confinement time is 100x lower than in MCF, the confinement is relatively easy to arrange and does not need the complex and expensive superconducting magnets used in most modern MCF experiments.

FRX-L is used solely for plasma creation, testing and diagnostics. [3] It uses four high-voltage (up to 100 kV) capacitor banks storing up to 1 MJ of energy to drive a 1.5 MA current in one-turn magnetic-field coils that surround a 10 cm diameter quartz tube. [6] In its current form as a plasma generator, FRX-L has demonstrated densities between (2 and 4)×1016 cm−3, temperatures of 100 to 250 eV, magnetic fields of 2.5 T and lifetimes of 10 to 15 μs. [7] All of these are within an order of magnitude of what would be needed for an energy-positive machine.

FRX-L was later upgraded to add an "injector" system. [8] This is situated around the quartz tube and consists of a conical arrangement of magnetic coils. When powered, the coils generate a field that is strong at one end of the tube and weaker at the other, pushing the plasma out the larger end. To complete the system, the injector was planned to be placed above the focus of the existing Shiva Star "can crusher" at the Air Force Research Laboratory's Directed Energy Lab at the Kirtland Air Force Base in Albuquerque, NM. [6]

FRCHX

In 2007, an experiment called FRCHX was placed on Shiva Star. [9] Similar to FRX-L, it uses a generation area and injects the plasma bundle into the Shiva Star liner compression area. Shiva Star delivers about 1.5 MJ into the kinetic energy of the 1 mm thick aluminum liner, which collapses cylindrically at about 5 km/s. This collapses the plasma bundle to a density around 5×1018 cm−3 and raises the temperature to about 5 keV, producing neutron yields on the order of 1012 neutrons "per shot" using a D-D fuel. [9] The power released in the larger shots, in the range of MJ, needs a period of resetting the equipment on the order of a week. The huge electromagnetic pulse (EMP) caused by the equipment forms a challenging environment for diagnostics.

Fusion demonstration plant

General Fusion of Canada, in partnership with the UK's Atomic Energy Authority, is to build a demonstration plant at Culham, England, as a precursor to a commercially viable pilot plant. The reaction vessel will be a fast-rotating cylinder of liquid metal (lead, incorporating lithium to harvest the tritium formed through neutron activation) which is formed into a sphere by the action of synchronised pistons driven by steam. Magnetized fusion fuel as plasma is injected into the sphere as it contracts, producing sufficient temperature and pressure for the fusion reaction to take place. The liquid metal is circulated through heat exchangers to provide steam.

Construction is expected to start in 2022, with operations beginning in 2025. [10] [11] [12]

Challenges

MTF is not the first "new approach" to fusion power. When ICF was introduced in the 1960s, it was a radical new approach that was expected[ by whom? ] to produce practical fusion devices by the 1980s. Other approaches have encountered unexpected problems that greatly increased the difficulty of producing output power. With MCF, it was unexpected instabilities in plasmas as density or temperature was increased. With ICF, it was unexpected losses of energy and difficulties "smoothing" the beams. These have been partially addressed in large modern machines, but only at great expense.

In a general sense, MTF's challenges appear to be similar to those of ICF. To produce power effectively, the density must be increased to a working level and then held there long enough for most of the fuel mass to undergo fusion. This is occurring while the metal liner is being driven inwards. Mixing of the metal with the fusion fuel would "quench" the reaction (a problem that occurs in MCF systems when plasma touches the vessel wall). Similarly, the collapse must be fairly symmetrical to avoid "hot spots" that could destabilize the plasma while it burns.

Problems in commercial development are similar to those for any of the existing fusion reactor designs. The need to form high-strength magnetic fields at the focus of the machine is at odds with the need to extract the heat from the interior, making the physical arrangement of the reactor a challenge. Further, the fusion process emits large numbers of neutrons (in common reactions at least) that lead to neutron embrittlement that degrades the strength of the support structures and conductivity of metal wiring. In typical MCF schemes, neutrons are intended to be captured in a lithium shell to generate more tritium to feed in as fuel, further complicating the overall arrangement. Deuterium-deuterium fusion would, of course, avoid this requirement.

Kopeck problem

Another concern for the MTF concept is named the kopeck problem. The kopeck is the Russian currency unit similar to the penny or cent, with 100 kopecks to the rouble. At an exchange rate of 75 roubles to the US dollar, a kopeck is worth little. The name is intended to allude to a tiny value of money. [13]

The problem is that the metal liners used in baseline MTF are consumed during the reaction. In return, the device would generate electricity. However, the value of that electricity is very low, on the order of a few pennies. Thus, in order to generate net positive cash flow, the device has to generate enormous amounts of energy per shot, unrealistically high amounts, or the cost of the fuel assemblies must be tiny, about a kopeck. [14]

Two potential solutions to the kopeck problem have been identified; the use of "hotspot ignition" (also explored in traditional ICF) appears to allow a great increase in energy release compared to energy input, thus addressing the problem from the gain side. The other is to attempt to recycle some of the components, or in the case of fluid-wall systems, not lose any material in the first place. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear fusion</span> Process of combining atomic nuclei

Nuclear fusion is a reaction in which two or more atomic nuclei, usually deuterium and tritium, combine to form one or more different atomic nuclei and subatomic particles. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released.

<span class="mw-page-title-main">Fusion rocket</span> Rocket driven by nuclear fusion power

A fusion rocket is a theoretical design for a rocket driven by fusion propulsion that could provide efficient and sustained acceleration in space without the need to carry a large fuel supply. The design requires fusion power technology beyond current capabilities, and much larger and more complex rockets.

<span class="mw-page-title-main">Inertial confinement fusion</span> Branch of fusion energy research

Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H).

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power.

<span class="mw-page-title-main">Lawson criterion</span> Criterion for igniting a nuclear fusion chain reaction

The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is higher than the rate of loss, the system will produce net energy. If enough of that energy is captured by the fuel, the system will become self-sustaining and is said to be ignited.

<span class="mw-page-title-main">Aneutronic fusion</span> Form of fusion power

Aneutronic fusion is any form of fusion power in which very little of the energy released is carried by neutrons. While the lowest-threshold nuclear fusion reactions release up to 80% of their energy in the form of neutrons, aneutronic reactions release energy in the form of charged particles, typically protons or alpha particles. Successful aneutronic fusion would greatly reduce problems associated with neutron radiation such as damaging ionizing radiation, neutron activation, reactor maintenance, and requirements for biological shielding, remote handling and safety.

<span class="mw-page-title-main">Fusion energy gain factor</span> Ratio of energy in to out in a fusion power plant

A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or in some sources, scientific breakeven.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Shiva laser</span>

The Shiva laser was a powerful 20-beam infrared neodymium glass laser built at Lawrence Livermore National Laboratory in 1977 for the study of inertial confinement fusion (ICF) and long-scale-length laser-plasma interactions. Presumably, the device was named after the multi-armed form of the Hindu god Shiva, due to the laser's multi-beamed structure. Shiva was instrumental in demonstrating a particular problem in compressing targets with lasers, leading to a major new device being constructed to address these problems, the Nova laser.

<span class="mw-page-title-main">HiPER</span> Planned ICF powered by lasers

The High Power laser Energy Research facility (HiPER), is a proposed experimental laser-driven inertial confinement fusion (ICF) device undergoing preliminary design for possible construction in the European Union. As of 2019, the effort appears to be inactive.

General Fusion is a Canadian company based in Vancouver, British Columbia, which is developing a fusion power device based on magnetized target fusion (MTF). The company was founded in 2002 by Dr. Michel Laberge. The company has more than 150 employees in three countries, with additional centers co-located with fusion research laboratories near London, and Oak Ridge, Tennessee, US.

<span class="mw-page-title-main">Magnetized liner inertial fusion</span> Method of producing controlled nuclear fusion

Magnetized liner inertial fusion (MagLIF) is an emerging method of producing controlled nuclear fusion. It is part of the broad category of inertial fusion energy (IFE) systems, which drives the inward movement of fusion fuel, thereby compressing it to reach densities and temperatures where fusion reactions occur. Previous IFE experiments used laser drivers to reach these conditions, whereas MagLIF uses a combination of lasers for heating and Z-pinch for compression. A variety of theoretical considerations suggest such a system will reach the required conditions for fusion with a machine of significantly less complexity than the pure-laser approach. There are currently at least two facilities testing feasibility of the MagLIF concept, the Z-machine at Sandia Labs in the US and Primary Test Stand (PTS) located in Mianyang, China.

Magneto-inertial fusion (MIF) describes a class of fusion devices which combine aspects of magnetic confinement fusion and inertial confinement fusion in an attempt to lower the cost of fusion devices. MIF uses magnetic fields to confine an initial warm, low-density plasma, then compresses that plasma to fusion conditions using an impulsive driver or "liner."

A plasma railgun is a linear accelerator which, like a projectile railgun, uses two long parallel electrodes to accelerate a "sliding short" armature. However, in a plasma railgun, the armature and ejected projectile consists of plasma, or hot, ionized, gas-like particles, instead of a solid slug of material. Scientific plasma railguns are typically operated in vacuum and not at air pressure. They are of value because they produce muzzle velocities of up to several hundreds of kilometers per second. Because of this, these devices have applications in magnetic confinement fusion (MCF), magneto-inertial fusion (MIF), high energy density physics research (HEDP), laboratory astrophysics, and as a plasma propulsion engine for spacecraft.

Helion Energy, Inc. is an American fusion research company, located in Everett, Washington. They are developing a magneto-inertial fusion technology to produce helium-3 and fusion power via aneutronic fusion, which could produce low-cost clean electric energy using a fuel that is derived exclusively from water.

<span class="mw-page-title-main">Linus (fusion experiment)</span> Experimental fusion power project

The Linus program was an experimental fusion power project developed by the United States Naval Research Laboratory (NRL) starting in 1971. The goal of the project was to produce a controlled fusion reaction by compressing plasma inside a metal liner. The basic concept is today known as magnetized target fusion.

Colliding beam fusion (CBF), or colliding beam fusion reactor (CBFR), is a class of fusion power concepts that are based on two or more intersecting beams of fusion fuel ions that are independently accelerated to fusion energies using a variety of particle accelerator designs or other means. One of the beams may be replaced by a static target, in which case the approach is termed accelerator based fusion or beam-target fusion, but the physics is the same as colliding beams.

Heavy ion fusion is a fusion energy concept that uses a stream of high-energy ions from a particle accelerator to rapidly heat and compress a small pellet of fusion fuel. It is a subclass of the larger inertial confinement fusion (ICF) approach, replacing the more typical laser systems with an accelerator.

Lattice confinement fusion (LCF) is a type of nuclear fusion in which deuteron-saturated metals are exposed to gamma radiation or ion beams, such as in an IEC fusor, avoiding the confined high-temperature gasses used in other methods of fusion.

References

  1. Azenti book on ICF, 2004, chapter 1
  2. "Triple product". EFDA. 2014-06-20. Archived from the original on 2014-09-11. Retrieved 2014-08-24.
  3. 1 2 3 Magnetized Target Fusion Experiments at LANL
  4. Dahlin, Jon-Erik (June 2001). "Reactor Potential for Magnetized Target Fusion" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  5. J. H. Degnan, J.; et al. (1999). "Compression of Plasma to Megabar Range using Imploding Liner". Physical Review Letters. 82 (13): 2681. Bibcode:1999PhRvL..82.2681D. doi:10.1103/PhysRevLett.82.2681.
  6. 1 2 3 FRX-L: A Plasma Injector for Magnetized Target Fusion
  7. "A high density field reversed configuration (FRC) target for magnetized target fusion" (PDF). Archived from the original (PDF) on January 16, 2009. Retrieved August 25, 2009.
  8. Applications of predictions for FRC translation
  9. 1 2 FRCHX Magnetized Target Fusion HEDLP Experiments (IAEA 2008 Fusion Energy Conference)
  10. "General Fusion to build its Fusion Demonstration Plant in the UK, at the UKAEA Culham Campus" (Press release). 2021-06-16. Retrieved 2021-06-17.
  11. "Our Technology - How does Magnetized Target Fusion work?". General Fusion . Retrieved 17 June 2021.
  12. "5 Big Ideas for Making Fusion Power a Reality". IEEE Spectrum: Technology, Engineering, and Science News. IEEE. 28 January 2020. Retrieved 26 June 2021.
  13. Seimon, R. "Magnetized Target Fusion". UCSD. Archived from the original on 2019-09-20. Retrieved 2018-06-05.
  14. 1 2 Seimon.

Further reading