Small Tight Aspect Ratio Tokamak | |
---|---|
Device type | Spherical tokamak |
Location | United Kingdom |
Affiliation | Culham Centre for Fusion Energy |
History | |
Year(s) of operation | 1990–1998 |
Succeeded by | Mega Ampere Spherical Tokamak (MAST) |
The Small Tight Aspect Ratio Tokamak, or START was a nuclear fusion experiment that used magnetic confinement to hold plasma. START was the first full-sized machine to use the spherical tokamak design, which aimed to greatly reduce the aspect ratio of the traditional tokamak design.
The experiment began at the Culham Science Centre in the United Kingdom in 1990 and was retired in 1998. It was built as a low cost design, largely using parts already available to the START team. The START experiment revolutionized the tokamak by changing the previous toroidal shape into a tighter, almost spherical, doughnut shape. The new shape increased efficiency by reducing the cost over the conventional design, while the field required to maintain a stable plasma was a factor of 10 less.
The main components that comprised START included the support structure, pulse transformer, vacuum tank, toroidal and poloidal field coils, and a limiter. The support structure positioned and supported the vacuum tank which also shared the same spherical center as the large pulse transformer. The main role of the pulse transformer was to provide the current for the toroidal field coils which was supplied through fifteen iron cores that were spirally wound from a .03 millimeter iron strip. The toroidal field coil was a central conductor made of copper on the axis of the vacuum tank, and was attached to the vacuum tank through copper limbs covered by insulated clamps. START had six poloidal field coils within the vacuum tank and were encased in 3 millimeter stainless steel cases. The poloidal coils were supported from the base of the tank and each could be adjusted as necessary. The vacuum tank was the primary vessel where experiments take place; it was cylindrical in shape and was divided into three sections. The tank offered numerous ports for the attachment of pumps and diagnostics. A graphite limiter was positioned around the central stainless steel tube and this provided a simple way to measure the innermost edge of the plasma during experiments. [1]
In order to successfully heat experiments in a spherical tokamak, physicists performed neutral beam injection. This involved interjecting hydrogen into hydrogen or deuterium plasmas, providing effective heating of both ions and electrons. Although the atoms were injected with no net electrostatic charge, as the beam passed through the plasma, the atoms were ionized as they bounced off the ions already in the plasma. Consequently, because the magnetic field inside the torus was circular, these fast ions were confined to the background plasma. The background plasma slowed the confined fast ions, in a similar way to how air resistance slows down a baseball. The energy transfer from the fast ions to the plasma increased the overall plasma temperature. The neutral beam injector used in START was on loan from Oak Ridge National Laboratory. [2]
The magneto-hydro-dynamic limit (MHD) was an operational limit of tokamaks, with START being no exception. The START team would test the MHD using forty-six sets of Mirnov coils at different heights on the center column of START. Plasmas being formed by compression within START limited the fluctuation of the MHD. [3]
Prior to October 1995, START had no rapid terminations. In October 1995, divertor coils were installed and images showed the plasma would interact with the coils before disruptions occurred. These suspicions were further strengthened when the divertor coils were moved closer to the plasma in December 1996, which resulted in a higher frequency of disruptions. [3]
The characteristics of plasma within START were also measured. Typical plasma within START had an aspect ratio A=1.3, elongation k=1.8, and a temperature of 400 eV. [2] [4]
A number of experiments reached 32 percent beta with START, where the previous world record for beta in a tokamak was 12.6 percent. Factors that contributed to the significantly higher beta number include better vacuum conditions, a more powerful neutral beam injection, a lower toroidal field, a higher plasma pressure, and a lower magnetic pressure. [4] In 1998 a non-ohmic beta of 40% was achieved. [5] : 29
In March 1998, the START experiment finished and has since been disassembled and transferred to the ENEA research laboratory at Frascati, Italy, where it formed the basis of Proto-Sphera. The START team began the Mega Ampere Spherical Tokamak Experiment or MAST in 1999 which operated in the Culham Science Centre, UK until 2013. A successor experiment called MAST Upgrade began operation in 2020 at Culham.
A stellarator confines plasma using external magnets. Scientists aim to use stellarators to generate fusion power. It is one of many types of magnetic confinement fusion devices, most commonly tokamak. The name "stellarator" refers to stars because fusion mostly occurs in stars such as the Sun. It is one of the earliest human-designed fusion power devices.
A tokamak is a device which uses a powerful magnetic field generated by external magnets to confine plasma in the shape of an axially symmetrical torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. The tokamak concept is currently one of the leading candidates for a practical fusion reactor.
In plasma physics, plasma stability concerns the stability properties of a plasma in equilibrium and its behavior under small perturbations. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. It is an important consideration in topics such as nuclear fusion and astrophysical plasma.
The Joint European Torus (JET) was a magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility was a joint European project with the main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine.
A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch that uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of a tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.
A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.
Mega Ampere Spherical Tokamak (MAST) was a nuclear fusion experiment, testing a spherical tokamak nuclear fusion reactor, and commissioned by EURATOM/UKAEA. The original MAST experiment took place at the Culham Centre for Fusion Energy, Oxfordshire, England from December 1999 to September 2013. A successor experiment called MAST Upgrade began operation in 2020.
The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.
The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the spherical tokamak concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, U for Upgrade.
The National Compact Stellarator Experiment, NCSX in short, was a magnetic fusion energy experiment based on the stellarator design being constructed at the Princeton Plasma Physics Laboratory (PPPL).
The Enormous Toroidal Plasma Device (ETPD) is an experimental physics device housed at the Basic Plasma Science Facility at University of California, Los Angeles (UCLA). It previously operated as the Electric Tokamak (ET) between 1999 and 2006 and was noted for being the world's largest tokamak before being decommissioned due to the lack of support and funding. The machine was renamed to ETPD in 2009. At present, the machine is undergoing upgrades to be re-purposed into a general laboratory for experimental plasma physics research.
ASDEX Upgrade is a divertor tokamak at the Max-Planck-Institut für Plasmaphysik, Garching that went into operation in 1991. At present, it is Germany's second largest fusion experiment after stellarator Wendelstein 7-X.
The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B2/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs.
The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.
The Tokamak de Fontenay-aux-Roses (TFR) was the first French tokamak, built in a research centre of the French Atomic Energy Commission (CEA) in Fontenay-aux-Roses, a commune in the southwestern suburbs of Paris. The project was spearheaded by Paul-Henri Rebut, and is sometimes jokingly referred to as the "Tokamak façon Rebut" – a pun on the name Rebut and the French word "rebut" meaning "rubbish".
Compact toroids are a class of toroidal plasma configurations that are self-stable, and whose configuration does not require magnet coils running through the center of the toroid. They are studied primarily in the field of fusion energy, where the lack of complex magnets and a simple geometry may allow the construction of dramatically simpler and less expensive fusion reactors.
A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.
The ISTTOK Tokamak is a research fusion reactor (tokamak) of the Instituto Superior Técnico. It has a circular cross-section due to a poloidal graphite limiter and an iron core transformer. Its particularity is that it is one of the few tokamaks operating in AC regime, as well in DC regime. In 2013, the AC operation allowed the standard discharges to extend from 35 ms to more than 1s.
The Compact Toroidal Hybrid (CTH) is an experimental device at Auburn University that uses magnetic fields to confine high-temperature plasmas. CTH is a torsatron type of stellarator with an external, continuously wound helical coil that generates the bulk of the magnetic field for containing a plasma.
The Tokamak Physics Experiment (TPX) was a plasma physics experiment that was designed but not built. It was designed by an inter-organizational team in the USA led by Princeton Plasma Physics Laboratory. The experiment was designed to test theories about how Tokamaks would behave in a high-performance, steady-state regime.