Spherical Tokamak for Energy Production

Last updated

Spherical Tokamak for Energy Production (STEP) is a spherical tokamak fusion plant concept proposed by the United Kingdom Atomic Energy Authority (UKAEA) and funded by UK government. [1] [2] [3] The project is a proposed DEMO-class successor device to the ITER tokamak proof-of-concept of a fusion plant, the most advanced tokamak fusion reactor to date, which is scheduled to achieve a 'burning plasma' in 2035. STEP aims to produce net electricity from fusion on a timescale of 2040. Jacob Rees-Mogg, the UK Secretary of State for Business, Energy and Industrial Strategy, announced West Burton A power station in Nottinghamshire as its site on 3 October 2022 during the Conservative Party Conference. [4] A coal-fired power station at the site ceased production a few days earlier. [5] The reactor is planned to have a 100 MW electrical output and be tritium self-sufficient via fuel breeding. [6]

Contents

Plans

In September 2019, the United Kingdom announced a planned £200-million (US$248-million) investment to produce a design for STEP. The funding covers the initial five year concept design phase, while the total capital costs are estimated to be several billion pounds. STEP should be operational by the early 2040s. [7] In February 2023 the UK government established a new delivery body for STEP, UK Industrial Fusion Solutions Ltd., under the UKAEA. [8]

The planned UK facility is based on a ‘tokamak’ design that uses magnetic fields to confine a plasma of heavy isotopes of hydrogen, tritium and deuterium, which fuse under extreme heat and pressure. STEP would be a variant on the basic tokamak, a spherical tokamak that holds the plasma in a cored-apple shape. UKAEA's MAST Upgrade spherical tokamak device started operation in October 2020, and will heavily inform the STEP design. [9] With a total diameter of only around 10 m, STEP will be relatively small in comparison to ITER. This greatly reduces the cost, but also puts higher stress on the applied materials. [10]

The construction of STEP is designed to occur over three phases. The first phase, from 2019 to 2024, should create an integrated concept design for the reactor together with a strategy to amass an intellectual property portfolio and manage technical risks. Additionally, it will locate a UK site and establish the operational framework for the venture. The second phase, from 2025 to 2032, will develop the engineering design, including testing and optimizing subsystems, at which stage the STEP site will begin to see a range of engineering activities. In the third phase, from 2032 to 2040, the SPR will be constructed and commissioned. [10]

The reactor's current goal is an electrical output of 100 MWe and will breed its own tritium via Tritium Breeding Modules. [6]

Goals and objectives

According to the UKAEA, STEP is designed to complement, not replace, private-sector development of fusion through synergies such as providing an enhanced research suite of facilities, an integrated design framework which can both inform private-sector activities and serve to solicit a private-sector supply chain of components and subsystems, a UK regulatory framework for fusion, and the training of a national fusion workforce. [10]

The STEP program is designed to achieve the following objectives: [10]

See also

Related Research Articles

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".

<span class="mw-page-title-main">Princeton Plasma Physics Laboratory</span> National laboratory for plasma physics and nuclear fusion science at Princeton, New Jersey

Princeton Plasma Physics Laboratory (PPPL) is a United States Department of Energy national laboratory for plasma physics and nuclear fusion science. Its primary mission is research into and development of fusion as an energy source. It is known for the development of the stellarator and tokamak designs, along with numerous fundamental advances in plasma physics and the exploration of many other plasma confinement concepts.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

<span class="mw-page-title-main">Joint European Torus</span> Facility in Oxford, United Kingdom

The Joint European Torus (JET) was a magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility was a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine.

<span class="mw-page-title-main">ITER</span> International nuclear fusion research and engineering megaproject

ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. Upon completion of construction of the main reactor and first plasma, planned for late 2025, it will be the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor. It is being built next to the Cadarache facility in southern France. ITER will be the largest of more than 100 fusion reactors built since the 1950s, with ten times the plasma volume of any other tokamak operating today.

<span class="mw-page-title-main">United Kingdom Atomic Energy Authority</span> UK government research organisation

The United Kingdom Atomic Energy Authority is a UK government research organisation responsible for the development of fusion energy. It is an executive non-departmental public body of the Department for Energy Security and Net Zero (DESNZ).

<span class="mw-page-title-main">Tokamak Fusion Test Reactor</span> Former experimental tokamak at Princeton Plasma Physics Laboratory

The Tokamak Fusion Test Reactor (TFTR) was an experimental tokamak built at Princeton Plasma Physics Laboratory (PPPL) circa 1980 and entering service in 1982. TFTR was designed with the explicit goal of reaching scientific breakeven, the point where the heat being released from the fusion reactions in the plasma is equal or greater than the heating being supplied to the plasma by external devices to warm it up.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Mega Ampere Spherical Tokamak</span> UK experimental fusion power reactor

Mega Ampere Spherical Tokamak (MAST) was a nuclear fusion experiment, testing a spherical tokamak nuclear fusion reactor, and commissioned by EURATOM/UKAEA. The original MAST experiment took place at the Culham Centre for Fusion Energy, Oxfordshire, England from December 1999 to September 2013. A successor experiment called MAST Upgrade began operation in 2020.

<span class="mw-page-title-main">DEMOnstration Power Plant</span> Planned fusion facility

DEMO refers to a proposed class of nuclear fusion experimental reactors that are intended to demonstrate the net production of electric power from nuclear fusion. Most of the ITER partners have plans for their own DEMO-class reactors. With the possible exception of the EU and Japan, there are no plans for international collaboration as there was with ITER.

<span class="mw-page-title-main">National Spherical Torus Experiment</span>

The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the spherical tokamak concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, for Upgrade.

General Fusion is a Canadian company based in Vancouver, British Columbia, which is developing a fusion power device based on magnetized target fusion (MTF). The company was founded in 2002 by Dr. Michel Laberge. The company has more than 150 employees in three countries, with additional centers co-located with fusion research laboratories near London, and Oak Ridge, Tennessee, US.

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

<span class="mw-page-title-main">Culham Centre for Fusion Energy</span> UKs national laboratory for controlled fusion research

The Culham Centre for Fusion Energy (CCFE) is the UK's national laboratory for fusion research. It is located at the Culham Science Centre, near Culham, Oxfordshire, and is the site of the Joint European Torus (JET), Mega Ampere Spherical Tokamak (MAST) and the now closed Small Tight Aspect Ratio Tokamak (START).

<span class="mw-page-title-main">Plasma-facing material</span>

In nuclear fusion power research, the plasma-facing material (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel.

The ARC fusion reactor is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three. The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build.

The China Fusion Engineering Test Reactor, or CFETR, is a proposed tokamak fusion reactor, which uses a magnetic field in order to confine plasma and generate energy. As of 2015, tokamak devices are leading candidates for the construction of a viable and practical thermonuclear fusion reactor. These reactors may be used to generate sustainable energy whilst ensuring a low environmental impact and a smaller carbon footprint than fossil fuel-based power plants.

Tokamak Energy is a fusion power company based near Oxford in the United Kingdom, established in 2009. The company is pursuing the global deployment of commercial fusion energy in the 2030s through the combined development of spherical tokamaks with high temperature superconducting (HTS) magnets. It is also developing HTS magnet technology for other applications.

References

  1. "UK wants to build world's first fusion power plant 20 years from now". ZME Science. 2019-10-22. Retrieved 2021-02-08.
  2. Gibney, Elizabeth (2019-10-11). "UK hatches plan to build world's first fusion power plant". Nature. doi:10.1038/d41586-019-03039-9. PMID   33037417. S2CID   208833905.
  3. Allison, Peter Ray. "The UK's quest for affordable fusion by 2040". www.bbc.com. Retrieved 2021-02-08.
  4. Roe, Tony; Smith, Alex (2022-10-03). "Nuclear fusion plant to be built at West Burton A power station". BBC News. Retrieved 2022-10-04.
  5. "EDF Energy confirms end-September 2022 closure for West Burton A coal plant". SPGlobal. 21 March 2021. Retrieved 22 March 2021.
  6. 1 2 STEP, UKAEA (2023-02-22). "Whole Plant Partners' engagement" (PDF). STEP UKAEA Web Portal. Retrieved 2023-04-04.
  7. Daniel Clerry (2020-12-02). "U.K. seeks site for world's first fusion power station". Science Magazine. doi:10.1126/science.abf9768. S2CID   230611562.
  8. Hamilton, Kirsty (February 7, 2023). "Science Minister announces new delivering body for West Burton fusion project". Worksop Guardian.
  9. Rincon, Paul (2020-10-29). "EUROATOM fusion experiment in UK used in hunt for clean energy". BBC News Online . Retrieved 2020-10-30.
  10. 1 2 3 4 Wilson, Howard; Chapman, Ian; Denton, Tris; Morris, William; Patel, Bhavin; Voss, Garry; Waldon, Chris; the STEP Team (2020), "STEP—on the pathway to fusion commercialization", Commercialising Fusion Energy, IOP Publishing, doi:10.1088/978-0-7503-2719-0ch8, ISBN   978-0-7503-2719-0, S2CID   234565909 , retrieved 2021-12-13

53°22′N0°49′W / 53.36°N 0.81°W / 53.36; -0.81