IGNITOR

Last updated
IGNITOR
Ignitor
Device type Tokamak
Location Troitsk, Russia
Affiliation ENEA
Technical specifications
Major radius1.32 m
Minor radius0.47 m × 0.86 m
Plasma volume10 m3
Magnetic field 13  T
Heating power12.8 MW
Fusion power100 MW
Discharge duration4 s
Plasma current11 MA
Plasma temperature 122×106 K

Ignitor is the Italian name for a planned tokamak device, developed by ENEA. As of 2022, the device has not been constructed.

Contents

Started in 1977 by Prof. Bruno Coppi at MIT, Ignitor based on the 1970s Alcator machine at MIT which pioneered the high magnetic field approach to plasma magnetic confinement, continued with the Alcator C/C-Mod at MIT and the FT/FTU series of experiments. [1] It was initially proposed to be built "in the area of the former Caorso nuclear power station". The currently intended location is at Troitsk near Moscow. [2]

Ignitor is designed to produce approximately 100 MW of fusion power despite its relatively small size. For comparison, the intended weight is 500 metric tons, while the ITER international reactor, expected to be the first tokamak to reach scientific breakeven, is some 19,000 tons.

2010

At a meeting with the scientific attachés of the European embassies in Moscow in early February 2010, Mikhail Kovalchuk, Director of the Kurchatov Institute, announced that an initiative aimed at developing a fast paced joint research programme in nuclear fusion research was strongly supported by the Governments of Russia and Italy. [3]

The original proposal had been initiated earlier by Evgeny Velikhov (President of the Kurchatov Institute) and Bruno Coppi (Head of the High Energy Plasmas Undertaking, MIT) during the early developments of the Alcator C-Mod programme at MIT, where well known scientists of the Kurchatov Institute made key contributions to experiments that identified the unique confinement and purity properties of the high density plasmas produced by the high field Alcator machine. In effects this investigated, for the first time, physical processes leading to attain self-sustained fusion burning plasmas.

The collaboration with the Kurchatov Institute is directed at the construction of the Ignitor machine, the first experiment proposed to achieve ignition conditions by nuclear fusion reactions on the basis of existing knowledge of plasma physics and available technologies. Ignitor is part of the line of research on high magnetic field, experiments producing high density plasmas that began with the Alcator and the Frascati Torus programmes at MIT and in Italy, respectively. Coppi claimed that IGNITOR would be a bigger step towards fusion power than the international ITER project, but several fusion scientists contested this in 2010. [4]

According to existing plans, Ignitor will be installed at the Triniti site at Troitsk near Moscow, that has facilities which can be upgraded to house and operate the machine. This site will become open and made to be easily accessible to scientists of all nations. The management of the relevant research programme will involve Italy and Russia only to facilitate the success of the enterprise. The proponents have suggested that the US become an Associate Member of this effort with a similar arrangement to that made with CERN for its participation in the LHC (Large Hadron Collider) Programme.

The goal to produce meaningful fusion reactors in a reasonable time leads to pursuing the achievement of ignition conditions in the near term in order to understand the plasma physical regimes needed for a net power producing reactor. In addition, an objective other than ignition that can be envisioned for the relatively near term is that of high flux neutron sources for material testing involving compact, high density fusion machines. This has been one of the incentives that have led the Ignitor Project to adopt magnesium diboride (MgB2) superconducting cables in the machine design, a first in fusion research. Accordingly, the largest coils (about 5m diameter) of the machine will be made entirely of MgB2 cables.

In the context of the Italy-Russia summit meeting held in Milan on 26 April 2010 [5] the agreement to proceed with the proposed joint Ignitor programme has been signed. The participants, from the Russian side, have included the Prime Minister Vladimir Putin, the Deputy Prime Minister Igor Sechin, the Energy Minister Sergei Shmatko, and the Vice Minister of Education and Research Sergey Mazurenko. Participants from the Italian side have included Prime Minister Silvio Berlusconi, the Foreign Affairs Advisor to the Prime Minister Valentino Valentini (who had a key role in forging the agreement on the Ignitor programme), and the Minister of Education and Research Mariastella Gelmini who, together with Sergey Mazurenko, signed the agreement in the presence of the two Prime Ministers. [1] [6]

After 2010

In 2013, new developments and issues for the Ignitor experiment were published. [7] The Ignitor project Conceptual Design Report was prepared by a joint Russian-Italian working group in 2015. [8] A 2015 study reports the advances made in different areas of the physics and technology that are relevant to the Ignitor project. [9] A safety analysis study for Ignitor at the TRINITI site was published in 2017. [2] A risks analysis of the project realization phase was published in 2017. [10] An informal exchange meeting took place in 2017. [11] The fuel cycle concept was presented in 2020. [12] [13] In 2022 the field-coil design was revised. [14]

Progress on construction

Some full-size prototype components have been built in Italy. [15] [ specify ] As of 2018, construction of Ignitor in Russia has not commenced. [16]

Related Research Articles

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power.

<span class="mw-page-title-main">ITER</span> International nuclear fusion research and engineering megaproject

ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. Upon completion of construction of the main reactor and first plasma, planned for late 2025, it will be the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor. It is being built next to the Cadarache facility in southern France. ITER will be the largest of more than 100 fusion reactors built since the 1950s, with ten times the plasma volume of any other tokamak operating today.

<span class="mw-page-title-main">T-15 (reactor)</span>

The T-15 is a Russian nuclear fusion research reactor located at the Kurchatov Institute, which is based on the (Soviet-invented) tokamak design. It was the first industrial prototype fusion reactor to use superconducting magnets to control the plasma. These enormous superconducting magnets confined the plasma the reactor produced, but failed to sustain it for more than just a few seconds. Despite not being immediately applicable, this new technological advancement proved to the USSR that they were on the right path. In the original shape, a toroidal chamber design, it had a major radius of 2.43 m and minor radius 0.7 m.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Mega Ampere Spherical Tokamak</span> UK experimental fusion power reactor

<span class="mw-page-title-main">DEMOnstration Power Plant</span> Planned fusion facility

DEMO refers to a proposed class of nuclear fusion experimental reactors that are intended to demonstrate the net production of electric power from nuclear fusion. Most of the ITER partners have plans for their own DEMO-class reactors. With the possible exception of the EU and Japan, there are no plans for international collaboration as there was with ITER.

<span class="mw-page-title-main">Kurchatov Institute</span> Russian nuclear energy research and development laboratory

The Kurchatov Institute is Russia's leading research and development institution in the field of nuclear energy. It is named after Igor Kurchatov and is located at 1 Kurchatov Square, Moscow.

<span class="mw-page-title-main">Alcator C-Mod</span> Tokamak at MIT

Alcator C-Mod was a tokamak that operated between 1991 and 2016 at the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). Notable for its high toroidal magnetic field, Alcator C-Mod holds the world record for volume averaged plasma pressure in a magnetically confined fusion device. Until its shutdown in 2016, it was one of the major fusion research facilities in the United States.

<span class="mw-page-title-main">Tokamak à configuration variable</span> Swiss research fusion reactor at the École Polytechnique Fédérale de Lausanne

The tokamak à configuration variable is an experimental tokamak located at the École Polytechnique Fédérale de Lausanne (EPFL) Swiss Plasma Center (SPC) in Lausanne, Switzerland. As the largest experimental facility of the Swiss Plasma Center, the TCV tokamak explores the physics of magnetic confinement fusion. It distinguishes itself from other tokamaks with its specialized plasma shaping capability, which can produce diverse plasma shapes without requiring hardware modifications.

<span class="mw-page-title-main">Plasma-facing material</span>

In nuclear fusion power research, the plasma-facing material (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel.

<span class="mw-page-title-main">Divertor</span>

In magnetic confinement fusion, a divertor or diverted configuration is a magnetic field configuration of a tokamak or a stellarator which separates the confined plasma from the material surface of the device. The plasma particles which diffuse across the boundary of the confined region are diverted by the open, wall-intersecting magnetic field lines to wall structures which are called the divertor targets, usually remote from the confined plasma. The magnetic divertor extracts heat and ash produced by the fusion reaction, minimizes plasma contamination, and protects the surrounding walls from thermal and neutronic loads.

The ARC fusion reactor is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three. The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build.

Hartmut Zohm is a German plasma physicist who is known for his work on the ASDEX Upgrade machine. He received the 2014 John Dawson Award and the 2016 Hannes Alfvén Prize for successfully demonstrating that neoclassical tearing modes in tokamaks can be stabilized by electron cyclotron resonance heating, which is an important design consideration for pushing the performance limit of the ITER.

The China Fusion Engineering Test Reactor is a proposed tokamak fusion reactor, which uses a magnetic field in order to confine plasma and generate energy. As of 2015, tokamak devices are leading candidates for the construction of a viable and practical thermonuclear fusion reactor. These reactors may be used to generate sustainable energy whilst ensuring a low environmental impact and a smaller carbon footprint than fossil fuel-based power plants.

HL-2A (Huan-Liuqi-2A) is a medium-sized tokamak for fusion research in Chengdu, China. It was constructed by the China National Nuclear Corporation from early 1999 to 2002, based on the main components of the former German ASDEX device. HL-2A was the first tokamak with a divertor in China. The research goals of HL-2A are the study of fundamental fusion plasma physics to support the international ITER fusion reactor.

Donato Palumbo was an Italian physicist best known as the leader of the European Atomic Energy Community (Euratom) fusion research program from its formation in 1958 to his retirement in 1986. He was a key force in the development of the tokamak during the 1970s and 80s, contributing several papers on plasma confinement in these devices and leading the JET fusion reactor program, which as of 2021, retains the record for the closest approach to breakeven, the ratio between the produced fusion power and the power used to heat it. He is referred to as the founding father of the European fusion program.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

Thailand Tokamak-1 is a small research tokamak operated by the Thailand Institute of Nuclear Technology in Nakhon Nayok province, Thailand. The tokamak was built in collaboration with the Institute of Plasma Physics of the Chinese Academy of Sciences and features an upgraded design based on the HT-6M tokamak developed in 1984. The first successful test of the device occurred on 21 April 2023. TT-1 officially began operations on 25 July 2023 and became the first tokamak to operate in Southeast Asia.

References

  1. 1 2 Dati Camera dei Deputati. Jan 2009 Italian ministerial reply
  2. 1 2 Bombarda, F.; Candido, L.; Coppi, B.; Gostev, A.; Khripunov, V.; Subbotin, M.; Testoni, R.; Zucchetti, M. (November 2017). "Ignitor siting at the TRINITI site in Russian Federation". Fusion Engineering and Design. 123: 192–195. doi:10.1016/j.fusengdes.2017.02.011. ISSN   0920-3796.
  3. Robert Arnoux (2010-05-14). "Italy and Russia revive Ignitor". ITER newsline. p. 169.
  4. Feresin, Emiliano (2010). "Fusion reactor aims to rival ITER". Nature. doi:10.1038/news.2010.214.
  5. "Il Legno storto, quotidiano online - Politica, Attualità, Cultura - Accordo Italia Russia per la realizzazione del progetto Ignitor del Prof. Bruno Coppi". Archived from the original on 2011-07-13. Retrieved 2010-07-01.
  6. Nuclear power in Italy, Berlusconi:"Start work within three years"
  7. Coppi, B.; et al. (26 September 2013). "New developments, plasma physics regimes and issues for the Ignitor experiment". Nuclear Fusion. 53 (10): 104013. Bibcode:2013NucFu..53j4013C. doi:10.1088/0029-5515/53/10/104013. eISSN   1741-4326. ISSN   0029-5515. S2CID   120764120.
  8. Perevezentsev, A. N.; Rozenkevich, M. B.; Subbotin, M. L. (2019-11-15). "Concept of the Fuel Cycle of the IGNITOR Tokamak". Physics of Atomic Nuclei. 82 (7): 1055–1059. doi:10.1134/S1063778819070093. S2CID   213278019.
  9. Coppi, B.; et al. (16 April 2015). "Perspectives for the high field approach in fusion research and advances within the Ignitor Program". Nuclear Fusion. 55 (5): 053011. Bibcode:2015NucFu..55e3011C. doi:10.1088/0029-5515/55/5/053011. eISSN   1741-4326. ISSN   0029-5515. S2CID   119512970.
  10. Subbotin, Mikhail; Bianchi, Aldo; Bombarda, Francesca; Kravchuk, Vladimir; Nappi, Eugenio; Spigo, Giancarlo (November 2017). "Preliminary risks analysis of the IGNITOR Project realization phase". Fusion Engineering and Design. 124: 1246–1250. doi:10.1016/j.fusengdes.2017.02.099. ISSN   0920-3796.
  11. The Russian-Italian Ignitor Tokamak Project: Design and status of implementation (2017)
  12. Perevezentsev, A. N.; Rozenkevich, M. B.; Subbotin, M. L. (December 2019). "Concept of the Fuel Cycle of the IGNITOR Tokamak". Physics of Atomic Nuclei. 82 (7): 1055–1059. doi:10.1134/S1063778819070093. eISSN   1562-692X. ISSN   1063-7788. S2CID   213278019.
  13. Rozenkevich, M.; Perevezentsev, A.; Subbotin, M.; Candido, L.; Testoni, R.; Zucchetti, M. (November 2020). "Optimisation of fuel cycle for IGNITOR tokamak at TRINITI in Russia: A critical review". International Journal of Hydrogen Energy. 45 (56): 32311–32319. doi:10.1016/j.ijhydene.2020.08.268. ISSN   0360-3199. S2CID   224954668.
  14. Mitrishkin, Y.V.; Korenev, P.S.; Konkov, A.E.; Kartsev, N.M.; Smirnov, I.S. (January 2022). "New horizontal and vertical field coils with optimised location for robust decentralized plasma position control in the IGNITOR tokamak". Fusion Engineering and Design. 174: 112993. doi:10.1016/j.fusengdes.2021.112993. ISSN   0920-3796. S2CID   245591369.
  15. Fact sheet (by MIT, pre-2014)
  16. Mikhail, Subbotin Leonidovich; Gostev, Alexander; Anashkin, Igor; Belov, Alexander; Levin, Igor (2019). "Status and tasks of TRINITI site infrastructure modernization for the Ignitor project". Fusion Engineering and Design. 146: 866–869. doi:10.1016/j.fusengdes.2019.01.101. ISSN   0920-3796. S2CID   126603670.