Mirror Fusion Test Facility

Last updated
MFTF
Mirror Fusion Test Facility
The Mirror Fusion Test Facility During Construction.jpg
The mirror fusion test facility during construction in 1983, part of the Yin-Yang magnets can be observed in the background.
Device type Magnetic mirror
Location Livermore, California, U.S.
Affiliation Lawrence Livermore National Laboratory
History
Date(s) of construction1977 – 1986
Preceded by 2XIIB  [ Wikidata ]
Related devices Tandem Mirror Experiment (TMX)
One of the two yin-yang mirrors arrives at LLNL. The plasma was confined in the small area between the two magnets. Llnl 03.jpg
One of the two yin-yang mirrors arrives at LLNL. The plasma was confined in the small area between the two magnets.
Drawing of the MFTF building MFTF 1.jpg
Drawing of the MFTF building

The Mirror Fusion Test Facility, or MFTF, was an experimental magnetic confinement fusion device built using the tandem magnetic mirror design. It was, by far, the largest, most powerful and most expensive mirror machine ever constructed. Due to budget cuts, it was mothballed the day after its construction was complete, and sat unused for a year before being formally cancelled. $372 million dollars were spent on the system during its lifetime.

Contents

MFTF was the ultimate development of a series of machines at Lawrence Livermore National Laboratory (LLNL) that trace their history back to the early 1950s. Over the years one problem after another had been addressed, leading to designs using "baseball" and "yin-yang" mirrors. By the late 1960s, it appeared possible to build stable mirrors. However, these changes had also lowered their economic performance, to the point where they appeared unattractive as power generators.

In 1968, the Soviets demonstrated their tokamak systems were outperforming all others by a factor of at least ten. The path to practical fusion appeared open, and in the US, in the mid-1970s, Robert Hirsch began plans to produce a prototype power plant. Having secured a massive budget increase, and desiring a second design in case the tokamak didn't pan out, a study of the alternative concepts suggested the best developed was the mirror. The original MFTF was essentially a very large yin-yang mirror, expected around 1982.

Hirsch's associate, Stephen O. Dean, asked for ideas that would improve the economics of the mirror. This led to the tandem mirror concept, and a redesign as MFTF-B, with the original mirror becoming one end of a much larger machine. To test the new concept, a smaller machine that could be rapidly built was constructed, Tandem Mirror Experiment, or TMX. Construction of MFTF and TMX began in 1977 and TMX began operations in 1979.

By the early 1980s, TMX was beginning to demonstrate serious problems that suggested MFTF-B would not work as predicted. This was occurring around the same time that Ronald Reagan declared that the energy crisis was over. In a series of sweeping budget cuts across the entire energy research field, MFTF had its operational budget cancelled, although its construction budget survived. Construction completed in 1986, and the facility sat unused for a year being scavenged for parts by other researchers until it was formally cancelled in 1987 and disassembled.

History

It was designed and built at Lawrence Livermore National Laboratory (LLNL), one of the primary research centers for mirror fusion devices. It cost 372 million dollars to construct, making it at the time the most expensive project in the lab's history. It opened on February 21, 1986 and was promptly shut down. The reason given was to balance the United States federal budget. [1]

Following on from the earlier Baseball II device, the facility was originally a similar system in which the confinement area was located between two horseshoe-shaped "mirrors".

During construction the success of the Tandem Mirror Experiment ("TMX") led to a redesign to insert a solenoid area between two such magnets, dramatically improving confinement time from a few milliseconds to over one second. [2] Most of the fusion power would be produced in the long solenoid. The yin-yang magnets would then serve only to dam up the ends in order to maintain good plasma confinement in the solenoid. Limited to break-even energy balance, the magnetic mirror endcaps consumed power, but much less than that produced in a solenoid of sufficient length.

A new version, officially MFTF-B, started construction in 1977 and was completed in 1986 on the very day the project was canceled. Operation of MFTF-B was demonstrated by powering the superconducting magnets, at the time the world's largest, but no experiments were performed. Rollbacks in fusion research funding dramatically reduced funding levels across the entire field.

Legacy

Parts of the MFTF have since been re-used on newer fusion experiments, one of which won a recycling award. [3] In 2021, the project was cited as a case study of the hypothetical demon of Bureaucratic Chaos, which "blocks good things from happening" at the United States Department of Energy. [4] Its fate was reminiscent of the Superconducting Super Collider and the National Compact Stellarator Experiment, both of which were also canceled.

Related Research Articles

<span class="mw-page-title-main">Stellarator</span> Plasma device using external magnets to confine plasma

A stellarator is a device that confines plasma using external magnets. Scientists aim to use stellarators to achieve controlled nuclear fusion. It is one of many types of magnetic confinement fusion devices, the most common being the tokamak. The name "stellarator" refers to stars as fusion also occurs in stars such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror.

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field generated by external magnets to confine plasma in the shape of an axially-symmetrical torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. The tokamak concept is currently one of the leading candidates for a practical fusion reactor.

<span class="mw-page-title-main">Magnetic mirror</span> Type of nuclear fusion reactor

A magnetic mirror, also known as a magnetic trap or sometimes as a pyrotron, is a type of magnetic confinement fusion device used in fusion power to trap high temperature plasma using magnetic fields. The mirror was one of the earliest major approaches to fusion power, along with the stellarator and z-pinch machines.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

<span class="mw-page-title-main">ITER</span> International nuclear fusion research and engineering megaproject

ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. It is being built next to the Cadarache facility in southern France. Upon completion of construction of the main reactor and first plasma, planned for 2033–2034, ITER will be the largest of more than 100 fusion reactors built since the 1950s, with six times the plasma volume of JT-60SA in Japan, the largest tokamak operating today.

<span class="mw-page-title-main">Reversed field pinch</span> Magnetic field plasma confinement device

A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch that uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of a tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.

<span class="mw-page-title-main">Levitated dipole</span>

A levitated dipole is a type of nuclear fusion reactor design using a superconducting torus which is magnetically levitated inside the reactor chamber. The name refers to the magnetic dipole that forms within the reaction chamber, similar to Earth's or Jupiter's magnetospheres. It is believed that such an apparatus could contain plasma more efficiently than other fusion reactor designs. The concept of the levitated dipole as a fusion reactor was first theorized by Akira Hasegawa in 1987.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Experimental Advanced Superconducting Tokamak</span> Experimental tokamak

The Experimental Advanced Superconducting Tokamak (EAST), internal designation HT-7U, is an experimental superconducting tokamak magnetic fusion energy reactor in Hefei, China. The Hefei Institutes of Physical Science is conducting the experiment for the Chinese Academy of Sciences. It has operated since 2006.

<span class="mw-page-title-main">National Spherical Torus Experiment</span> US nucelar fusion reactor

The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the spherical tokamak concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, for Upgrade.

<span class="mw-page-title-main">National Compact Stellarator Experiment</span>

The National Compact Stellarator Experiment, NCSX in short, was a magnetic fusion energy experiment based on the stellarator design being constructed at the Princeton Plasma Physics Laboratory (PPPL).

A Riggatron is a magnetic confinement fusion reactor design created by Robert W. Bussard in the late 1970s. It is a tokamak on the basis of its magnetic geometry, but some unconventional engineering choices were made. In particular, Riggatron used copper magnets positioned inside the lithium blanket, which was hoped to lead to much lower construction costs. Originally referred to as the Demountable Tokamak Fusion Core (DTFC), the name was later changed to refer to the Riggs Bank, which funded development along with Bob Guccione, publisher of the adult magazine Penthouse.

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

<span class="mw-page-title-main">Tandem Mirror Experiment</span> Experimental fusion reactor

The Tandem Mirror Experiment was a magnetic mirror machine operated from 1979 to 1987 at the Lawrence Livermore National Laboratory. It was the first large-scale machine to test the "tandem mirror" concept in which two mirrors trapped a large volume of plasma between them in an effort to increase the efficiency of the reactor.

The ARC fusion reactor is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three. The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

<span class="mw-page-title-main">Theta pinch</span> Fusion power reactor design

Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of currents used to confine the plasma fuel in the reactor, arranged to run around a cylinder in the direction normally denoted as theta in polar coordinate diagrams. The name was chosen to differentiate it from machines based on the pinch effect that arranged their currents running down the centre of the cylinder; these became known as z-pinch machines, referring to the Z-axis in cartesian coordinates.

References

  1. Booth, William (1987). "Fusion's $372-Million Mothball". Science. 238 (4824): 152–155. Bibcode:1987Sci...238..152B. doi:10.1126/science.238.4824.152. PMID   17800453.
  2. The Tandem Mirror Fusion Test Facility
  3. Re-using MFTF parts Archived 2006-10-06 at the Wayback Machine
  4. "The Demon of Bureaucratic Chaos". The New Atlantis. Retrieved 2021-07-05.