List of fusion experiments

Last updated
Target chamber of the Shiva laser, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981 Shiva laser target chamber.jpg
Target chamber of the Shiva laser, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981
Plasma chamber of TFTR, used for magnetic confinement fusion experiments, which produced 11 MW of fusion power in 1994 U.S. Department of Energy - Science - 114 035 002 (14281232230).jpg
Plasma chamber of TFTR, used for magnetic confinement fusion experiments, which produced 11 MW of fusion power in 1994

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

Contents

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of 1018 to 1022 m−3 and the linear dimensions in the range of 0.1 to 10 m. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of 1031 to 1033 m−3 and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or 104 times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

Toroidal machine

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

Tokamak [1]

Device nameStatusConstructionOperationLocationOrganisationMajor/minor radiusB-fieldPlasma currentPurposeImage
T-1 (Tokamak-1) [2] Shut down19571958–1959 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.625 m/0.13 m1 T0.04 MAFirst tokamak Tokamak T-1.jpg
T-2 (Tokamak-2) [2] Recycled →FT-1 19591960–1970 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.62 m/0.22 m1 T0.04 MA
T-3 (Tokamak-3) [2] Shut down19601962–? Flag of the Soviet Union.svg Moscow Kurchatov Institute 1 m/0.12 m3.5 T0.15 MAOvercame Bohm diffusion by a factor of 10, temperature 10 MK, confinement time 10 ms
T-5 (Tokamak-5) [2] Shut down ?1962–1970 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.625 m/0.15 m1.2 T0.06 MAInvestigation of plasma equilibrium in vertical and horizontal direction
TM-1Shut down ? ? Flag of the Soviet Union.svg Moscow Kurchatov Institute
TM-2Shut down ?1965 Flag of the Soviet Union.svg Moscow Kurchatov Institute
TM-3Shut down ?1970 Flag of the Soviet Union.svg Moscow Kurchatov Institute
FT-1 [2] Recycled →CASTOR T-2 1972–2002 Flag of the Soviet Union.svg Saint Petersburg Ioffe Institute 0.62 m/0.22 m1.2 T0.05 MA
ST (Symmetric Tokamak)Shut down Model C 1970–1974 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 1.09 m/0.13 m5.0 T0.13 MAFirst American tokamak, converted from Model C stellarator
T-6 (Tokamak-6)Shut down ?1970–1974 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.7 m/0.25 m1.5 T0.22 MA
TUMAN-2, 2AShut down ?1971–1985 Flag of the Soviet Union.svg Saint Petersburg Ioffe Institute 0.4 m/0.08 m1.5 T0.012 MA
ORMAK (Oak Ridge tokaMAK)Shut down1971–1976 Flag of the United States.svg Oak Ridge Oak Ridge National Laboratory 0.8 m/0.23 m2.5 T0.34 MAFirst to achieve 20 MK plasma temperature ORMAK (46436229152).jpg
Doublet IIShut down1972–1974 Flag of the United States.svg San Diego General Atomics 0.63 m/0.08 m0.95 T0.21 MA
ATC (Adiabatic Toroidal Compressor)Shut down1971–19721972–1976 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.88 m/0.11 m2 T0.05 MADemonstrate compressional plasma heating HD.6D.745 (13471450163).jpg
T-9 (Tokamak-9)Shut down ?1972–1977 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.36 m/0.07 m1 T
TO-1Shut down ?1972–1978 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.6 m/0.13 m1.5 T0.07 MA
Alcator A (Alto Campo Toro)Shut down ?1972–1978 Flag of the United States.svg Cambridge Massachusetts Institute of Technology 0.54 m/0.10 m9.0 T0.3 MA
JFT-2 (JAERI Fusion Torus 2)Shut down ?1972–1982 Flag of Japan.svg Naka Japan Atomic Energy Research Institute 0.9 m/0.25 m1.8 T0.25 MA
Turbulent Tokamak Frascati (TTF, torello)Shut down1973 Flag of Italy.svg Frascati ENEA 0.3 m/0.04 m1 T0.005 MAStudy of turbulent plasma heating
Pulsator [3] Shut down1970–19731973–1979 Flag of Germany.svg Garching Max Planck Institute for Plasma Physics 0.7 m/0.12 m2.7 T0.125 MADiscovery of high-density operation with tokamaks
TFR (Tokamak de Fontenay-aux-Roses)Shut down1973–1984 Flag of France.svg Fontenay-aux-Roses CEA 0.98 m/0.2 m6 T0.49 MA
T-4 (Tokamak-4) [2] Shut down ?1974–1978 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.9 m/0.16 m5 T0.3 MAObserved fast thermal quench before major plasma disruptions
Doublet IIAShut down1974–1979 Flag of the United States.svg San Diego General Atomics 0.66 m/0.15 m0.76 T0.35 MA
Petula-BShut down ?1974–1986 Flag of France.svg Grenoble CEA 0.72 m/0.18 m2.7 T0.23 MA
T-10 (Tokamak-10) [2] Operational1975– Flag of the Soviet Union.svg Moscow Kurchatov Institute 1.50 m/0.37 m4 T0.8 MALargest tokamak of its time Polytec TOKAMAK model (4260325496).jpg
T-11 (Tokamak-11)Shut down ?1975–1984 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.7 m/0.25 m1 T
PLT (Princeton Large Torus)Shut down1972–19751975–1986 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 1.32 m/0.42 m4 T0.7 MAFirst to achieve 1 MA plasma current HD.6B.701 (10348295326).jpg
Divertor Injection Tokamak Experiment (DITE)Shut down1975–1989 Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 1.17 m/0.27 m2.7 T0.26 MA
JIPP T-IIShut down ?1976 Flag of Japan.svg NagoyaNagoya University0.91 m/0.17 m3 T0.16 MA
TNT-AShut down ?1976 Flag of Japan.svg TokyoTokyo University0.4 m/0.09 m0.42 T0.02 MA
T-8 (Tokamak-8) [2] Shut down ?1976–? Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.28 m/0.048 m0.9 T0.024 MAFirst D-shaped tokamak
Microtor [4] Shut down ?1976–1983? Flag of the United States.svg Los Angeles UCLA 0.3 m/0.1 m2.5 T0.12 MAPlasma impurity control and diagnostic development
Macrotor [4] Shut down ?1970s–80s Flag of the United States.svg Los Angeles UCLA 0.9 m/0.4 m0.4 T0.1 MAUnderstanding plasma rotation driven by radial current
TUMAN-3 [2] Operational ?1977–
(1990–, 3M)
Flag of the Soviet Union.svg Saint Petersburg Ioffe Institute 0.55 m/0.23 m3 T0.18 MAStudy adiabatic compression, RF and NB heating, H-mode and parametric instability
Thor [5] Shut down ? Flag of Italy.svg MilanoUniversity of Milano0.52 m/0.195 m1 T0.055 MA
FT (Frascati Tokamak)Shut down1978 Flag of Italy.svg Frascati ENEA 0.83 m/0.20 m10 T0.8 MA
PDX (Poloidal Divertor Experiment)Shut down ?1978–1983 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 1.4 m/0.4 m2.4 T0.5 MA
ISX-BShut down ?1978–1984 Flag of the United States.svg Oak Ridge Oak Ridge National Laboratory 0.93 m/0.27 m1.8 T0.2 MAAttempt high-beta operation
Doublet IIIShut down1978–1985 Flag of the United States.svg San Diego General Atomics 1.45 m/0.45 m2.6 T0.61 MA
T-12 (Tokamak-12)Shut down ?1978–1985 Flag of the Soviet Union.svg Moscow Kurchatov Institute 0.36 m/0.08 m1 T0.03 MA
Alcator C (Alto Campo Toro)Shut down ?1978–1986 Flag of the United States.svg Cambridge Massachusetts Institute of Technology 0.64 m/0.16 m13 T0.8 MA
T-7 (Tokamak-7) [2] Recycled →HT-7 [6]  ?1979–1985 Flag of the Soviet Union.svg Moscow Kurchatov Institute 1.2 m/0.31 m3 T0.3 MAFirst tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment) [7] Recycled →HL-2A 1973–19801980–1990 Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 1.65 m/0.4 m2.8 T0.5 MADiscovery of the H-mode in 1982
FT-2 [2] Operational ?1980– Flag of the Soviet Union.svg Saint Petersburg Ioffe Institute 0.55 m/0.08 m3 T0.05 MAH-mode physics, LH heating
TEXTOR (Tokamak Experiment for Technology Oriented Research) [8] [9] Shut down1976–19801981–2013 Flag of Germany.svg Jülich Forschungszentrum Jülich 1.75 m/0.47 m2.8 T0.8 MAStudy plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor) [10] Shut down1980–19821982–1997 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 2.4 m/0.8 m5.9 T3 MAAttempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MK U.S. Department of Energy - Science - 114 035 002 (14281232230).jpg
Tokamak de Varennes (TdeV)Shut down ?1983–1997 Flag of Canada (Pantone).svg Montreal National Research Council Canada 0.83 m/0.27 m1.5 T0.3 MA [11]
JFT-2M (JAERI Fusion Torus 2M)Shut down ?1983–2004 Flag of Japan.svg Naka Japan Atomic Energy Research Institute 1.3 m/0.35 m2.2 T0.5 MA
JET (Joint European Torus) [12] Shut down1978–19831983–2023 Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 2.96 m/0.96 m4 T7 MARecords for fusion output power 16.1 MW (1997), fusion energy 69 MJ (2023) JET cutaway drawing 1980.jpg
Novillo [13] [14] Shut downNOVA-II1983–2004 Flag of Mexico.svg Mexico CityInstituto Nacional de Investigaciones Nucleares0.23 m/0.06 m1 T0.01 MAStudy plasma-wall interactions
JT-60 (Japan Torus-60) [15] Recycled →JT-60SA 1985–2010 Flag of Japan.svg Naka Japan Atomic Energy Research Institute 3.4 m/1.0 m4 T3 MAHigh-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak)Shut down ?1986–199? Flag of the United States.svg Los Angeles UCLA 1.5 m/0.4 m0.2 T0.05 MAH-mode studies
DIII-D [16] Operational1986 [17] 1986– Flag of the United States.svg San Diego General Atomics 1.67 m/0.67 m2.2 T3 MATokamak Optimization 2017 TOCAMAC Fusion Chamber N0689.jpg
STOR-M (Saskatchewan Torus-Modified) [18] Operational1987– Flag of Canada (Pantone).svg Saskatoon Plasma Physics Laboratory (Saskatchewan) 0.46 m/0.125 m1 T0.06 MAStudy plasma heating and anomalous transport
T-15 [2] Recycled →T-15MD 1983–19881988–1995 Flag of the Soviet Union.svg Moscow Kurchatov Institute 2.43 m/0.78 m3.6 T1 MAFirst superconducting tokamak, pulse duration 1.5 s 1987 CPA 5891.jpg
Tore Supra [19] Recycled →WEST 1988–2011 Flag of France.svg CadaracheDépartement de Recherches sur la Fusion Contrôlée2.25 m/0.7 m4.5 T2 MALarge superconducting tokamak with active cooling
ADITYA (tokamak) Operational1989– Flag of India.svg Gandhinagar Institute for Plasma Research 0.75 m/0.25 m1.2 T0.25 MA
COMPASS (COMPact ASSembly) [20] [21] Operational1980–1989– Flag of the Czech Republic.svg Prague Institute of Plasma Physics AS CR 0.56 m/0.23 m2.1 T0.32 MAPlasma physics studies for ITER COMPASStokamak chamber.jpg
FTU (Frascati Tokamak Upgrade)Operational1990– Flag of Italy.svg Frascati ENEA 0.935 m/0.35 m8 T1.6 MA
START (Small Tight Aspect Ratio Tokamak) [22] Recycled →Proto-Sphera 1990–1998 Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.3 m/?0.5 T0.31 MAFirst full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment)Operational1991– Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 1.65 m/0.5 m2.6 T1.4 MA ASDEX Upgrade model.jpg
Alcator C-Mod (Alto Campo Toro) [23] Shut down1986–1991–2016 Flag of the United States.svg Cambridge Massachusetts Institute of Technology 0.68 m/0.22 m8 T2 MARecord plasma pressure 2.05 bar Alcator C-Mod Fisheye from Fport.jpg
ISTTOK (Instituto Superior Técnico TOKamak) [24] Operational1992– Flag of Portugal.svg Lisbon Instituto de Plasmas e Fusão Nuclear 0.46 m/0.085 m2.8 T0.01 MA
TCV (Tokamak à Configuration Variable) [25] Operational1992– Flag of Switzerland (Pantone).svg Lausanne École Polytechnique Fédérale de Lausanne 0.88 m/0.25 m1.43 T1.2 MAConfinement studies Tcv int.jpg
HBT-EP (High Beta Tokamak-Extended Pulse)Operational1993– Flag of the United States.svg New York City Columbia University Plasma Physics Laboratory0.92 m/0.15 m0.35 T0.03 MAHigh-Beta tokamak HBT-EP shells and sensors.jpg
HT-7 (Hefei Tokamak-7)Shut down1991–1994 (T-7)1995–2013 Flag of the People's Republic of China.svg Hefei Hefei Institutes of Physical Science 1.22 m/0.27 m2 T0.2 MAChina's first superconducting tokamak
Pegasus Toroidal Experiment [26] Operational ?1996– Flag of the United States.svg Madison University of Wisconsin–Madison 0.45 m/0.4 m0.18 T0.3 MAExtremely low aspect ratio Pegasus Toroidal Experiment (6140926094).jpg
NSTX (National Spherical Torus Experiment) [27] Operational1999– Flag of the United States.svg Plainsboro Township Princeton Plasma Physics Laboratory 0.85 m/0.68 m0.3 T2 MAStudy the spherical tokamak concept U.S. Department of Energy - Science - 114 003 003 (9939887676).jpg
Globus-M (UNU Globus-M) [28] Operational1999– Flag of Russia.svg Saint Petersburg Ioffe Institute 0.36 m/0.24 m0.4 T0.3 MAStudy the spherical tokamak concept
ET (Electric Tokamak)Recycled →ETPD 19981999–2006 Flag of the United States.svg Los Angeles UCLA 5 m/1 m0.25 T0.045 MALargest tokamak of its time The Electric Tokamak.jpg
TCABR (Tokamak Chauffage Alfvén Brésilien)Operational1980–19991999– Flag of Switzerland (Pantone).svg Lausanne,
Flag of Brazil.svg Sao Paulo
University of Sao Paulo 0.615 m / 0.18 m1.1 T0.10 MAMost important tokamak in the southern hemisphere TCABR lab.jpg
CDX-U (Current Drive Experiment-Upgrade)Recycled →LTX 2000–2005 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.3 m/?0.23 T0.03 MAStudy Lithium in plasma walls U.S. Department of Energy - Science - 413 002 003 (9952381694).jpg
MAST (Mega-Ampere Spherical Tokamak) [29] Recycled →MAST-Upgrade 1997–19992000–2013 Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.85 m/0.65 m0.55 T1.35 MAInvestigate spherical tokamak for fusion MAST plasma image.jpg
HL-2A (Huan-Liuqi-2A)Operational2000–20022002–2018 Flag of the People's Republic of China.svg Chengdu Southwestern Institute of Physics 1.65 m/0.4 m2.7 T0.43 MAH-mode physics, ELM mitigation
SST-1 (Steady State Superconducting Tokamak) [30] Operational2001–2005– Flag of India.svg Gandhinagar Institute for Plasma Research 1.1 m/0.2 m3 T0.22 MAProduce a 1000 s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak) [31] Operational2000–20052006– Flag of the People's Republic of China.svg Hefei Hefei Institutes of Physical Science 1.85 m/0.43 m3.5 T0.5 MASuperheated plasma for over 101 s at 120 M°C and 20 s at 160 M°C [32] EAST-tokamak sketch.png
J-TEXT (Joint TEXT)OperationalTEXT (Texas EXperimental Tokamak)2007– Flag of the People's Republic of China.svg Wuhan Huazhong University of Science and Technology 1.05 m/0.26 m2.0 T0.2 MADevelop plasma control
KSTAR (Korea Superconducting Tokamak Advanced Research) [33] Operational1998–20072008– Flag of South Korea.svg Daejeon National Fusion Research Institute 1.8 m/0.5 m3.5 T2 MATokamak with fully superconducting magnets, 48 s-long operation at 100 MK [34] KSTAR tokamak.jpg
LTX (Lithium Tokamak Experiment)Operational2005–20082008– Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.4 m/?0.4 T0.4 MAStudy Lithium in plasma walls U.S. Department of Energy - Science - 114 001 004 (29677232615).jpg
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak) [35] Operational2008– Flag of Japan.svg Kasuga Kyushu University 0.68 m/0.4 m0.25 T0.02 MAStudy steady state operation of a Spherical Tokamak QUEST tokamak (cropped).jpg
Kazakhstan Tokamak for Material testing (KTM)Operational2000–20102010– Flag of Kazakhstan.svg KurchatovNational Nuclear Center of the Republic of Kazakhstan0.86 m/0.43 m1 T0.75 MATesting of wall and divertor
ST25-HTS [36] Operational2012–20152015– Flag of the United Kingdom.svg Culham Tokamak Energy Ltd0.25 m/0.125 m0.1 T0.02 MASteady state plasma Tokamak ST25 rf discharge.jpg
WEST (Tungsten Environment in Steady-state Tokamak)Operational2013–20162016– Flag of France.svg CadaracheDépartement de Recherches sur la Fusion Contrôlée2.5 m/0.5 m3.7 T1 MASuperconducting tokamak with active cooling WEST fish-eye lens.jpg
ST40 [37] Operational2017–20182018– Flag of the United Kingdom.svg Didcot Tokamak Energy Ltd0.4 m/0.3 m3 T2 MAFirst high field spherical tokamak, reached 100 MK plasma Tokamak ST40 engineering drawing.jpg
MAST-U (Mega-Ampere Spherical Tokamak Upgrade) [38] Operational2013–20192020– Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.85 m/0.65 m0.92 T2 MATest new exhaust concepts for a spherical tokamak
HL-2M (Huan-Liuqi-2M) [39] Operational2018–20192020– Flag of the People's Republic of China.svg Leshan Southwestern Institute of Physics 1.78 m/0.65 m2.2 T1.2 MAElongated plasma with 200 MK HL-2M tokamak CAD.jpg
JT-60SA (Japan Torus-60 super, advanced) [40] Operational2013–20202021– Flag of Japan.svg Naka Japan Atomic Energy Research Institute 2.96 m/1.18 m2.25 T5.5 MAOptimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation JT-60SA Tokamak (cropped2).jpg
T-15MD Operational2010–20202021– Flag of Russia.svg Moscow Kurchatov Institute 1.48 m/0.67 m2 T2 MAHybrid fusion/fission reactor T-15MD Toroidal winding and poloidal field coils.jpg
IGNITOR [41] Cancelled 2022 [42] -- Flag of Russia.svg Troitzk ENEA 1.32 m/0.47 m13 T11 MACompact fusion reactor with self-sustained plasma and 100 MW of planned fusion power
HongHuang 70 [43] Operational2022–20242024 Flag of the People's Republic of China.svg ShanghaiEnergy Singularity0.75 m/?2.5 TREBCO High-temperature superconducting coils
SPARC [44] [45] [46] [47] [48] Under construction2021–2025? Flag of the United States.svg Devens, MA Commonwealth Fusion Systems and MIT Plasma Science and Fusion Center 1.85 m/0.57 m12.2 T8.7 MACompact, high-field tokamak with ReBCO coils and 100 MW planned fusion power Sparc february 2018.jpg
ITER [49] Under construction2013–2034?2034? Flag of France.svg Cadarache ITER Council6.2 m/2.0 m5.3 T15 MA ?Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power ITER Exhibit (01810402) (12219071813) (cropped).jpg
DTT (Divertor Tokamak Test facility) [50] [51] [52] Planned2022–2029?2029? Flag of Italy.svg Frascati ENEA 2.19 m/0.70 m5.85 T ?5.5 MA ?Superconducting tokamak to study power exhaust
SST-2 (Steady State Tokamak-2) [53] Planned2027? Flag of India.svg Gujarat Institute for Plasma Research 4.42 m/1.47 m5.42 T11.2 MAFull-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor) [54] Planned≥20242030? Flag of the People's Republic of China.svg Institute of Plasma Physics, Chinese Academy of Sciences7.2 m/2.2 m ?6.5 T ?14 MA ?Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
ST-F1 (Spherical Tokamak - Fusion 1) [55] Planned2027? Flag of the United Kingdom.svg Didcot Tokamak Energy Ltd1.4 m/0.8 m ?4 T5 MASpherical tokamak with Q=3 and hundreds of MW planned electrical output (no longer mentioned by company as of 2024)
STX (ST80-HTS)Planned2026?2030? Flag of the United Kingdom.svg Culham Tokamak Energy LtdSpherical tokamak capable of 15min-pulsed operation [56] [57]
ST-E1Planned2030s? Flag of the United Kingdom.svg Culham Tokamak Energy LtdSpherical tokamak with 200 MW planned net electric output [58]
STEP (Spherical Tokamak for Energy Production)Planned2032-20402040 D-D
Mid 2040s DT Campaign
Flag of the United Kingdom.svg West Burton, Nottinghamshire United Kingdom Atomic Energy Authority 3 m/2 m ? ?16.5 MA ?Spherical tokamak with 100 MW planned electrical output [59]
JA-DEMOPlanned2030?2050? Flag of Japan.svg ?8.5 m/2.4 m [60] 5.94 T12.3 MAPrototype for development of Commercial Fusion Reactors 1.5–2 GW Fusion output. [61]
K-DEMO (Korean fusion demonstration tokamak reactor) [62] Planned2037? Flag of South Korea.svg National Fusion Research Institute 6.8 m/2.1 m7 T12 MA ?Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power K-DEMO device core design features.jpg
DEMO (DEMOnstration Power Station)Planned2040?2050? ?9 m/3 m ?6 T ?20 MA ?Prototype for a commercial fusion reactor EUROfusion schematic diagram of fusion power plant.jpg

Stellarator

Device nameStatusConstructionOperationTypeLocationOrganisationMajor/minor radiusB-fieldPurposeImage
Model AShut down1952–19531953–?Figure-8 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.3 m/0.02 m0.1 TFirst stellarator, table-top device
Model BShut down1953–19541954–1959Figure-8 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.3 m/0.02 m5 TDevelopment of plasma diagnostics
Model B-1Shut down ?–1959Figure-8 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.25 m/0.02 m5 TYielded 1 MK plasma temperatures, showed cooling by X-ray radiation from impurities
Model B-2Shut down1957Figure-8 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.3 m/0.02 m5 TElectron temperatures up to 10 MK
Model B-3Shut down19571958–Figure-8 Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.4 m/0.02 m4 TLast figure-8 device, confinement studies of ohmically heated plasma
Model B-64Shut down19551955Square Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory  ? m/0.05 m1.8 T
Model B-65Shut down19571957Racetrack Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory
Model B-66Shut down19581958–?Racetrack Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory
Wendelstein 1-AShut down1960Racetrack Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 0.35 m/0.02 m2 Tℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery"
Wendelstein 1-BShut down1960Racetrack Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 0.35 m/0.02 m2 Tℓ=2
Model C Recycled →ST 1957–19611961–1969Racetrack Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 1.9 m/0.07 m3.5 TSuffered from large plasma losses by Bohm diffusion through "pump-out"
L-1Shut down19631963–1971round Flag of the Soviet Union.svg Moscow Lebedev Physical Institute 0.6 m/0.05 m1 TFirst Soviet stellarator, overcame Bohm diffusion
SIRIUSShut down1964–?Racetrack Flag of the Soviet Union.svg Kharkiv Kharkiv Institute of Physics and Technology (KIPT)
TOR-1Shut down19671967–1973 Flag of the Soviet Union.svg Moscow Lebedev Physical Institute 0.6 m/0.05 m1 T
TOR-2Shut down ?1967–1973 Flag of the Soviet Union.svg Moscow Lebedev Physical Institute 0.63 m/0.036 m2.5 T
Uragan-1Shut down1960–19671967–?Racetrack Flag of the Soviet Union.svg Kharkiv National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.1 m/0.1 m1 TOvercame Bohm-diffusion by a factor of 30
CLASP (Closed Line And Single Particle) [63] Shut down ?1967–? Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.3 m/0.056 m0.1 TStudy confinement of electrons in a high-shear stellarator
TWIST [63] Shut down ?1967–? Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.32 m/0.045 m0.3 TStudy turbulent heating
Proto-CLEO [63] Shut down ?1968–?single-turn helical winding inside toroidal field conductors Flag of the United Kingdom.svg Culham,
Flag of the United States.svg Madison
United Kingdom Atomic Energy Authority 0.4 m/0.05 m0.5 Tconfirmed plasma confinement times of neoclassical theory
TORSO [63] Shut down ?1972–?Ultimate torsatron Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.4 m/0.05 m2 T
CLEO [63] Shut down ?1974–? Flag of the United Kingdom.svg Culham United Kingdom Atomic Energy Authority 0.9 m/0.125 m2 TStudy of particle transport and beta limits, reached similar performance as tokamaks
Wendelstein 2-AShut down1965–19681968–1974Heliotron Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 0.5 m/0.05 m0.6 TGood plasma confinement DMM 1988-643 Fusionsexperiment Wendelstein-IIa.jpg
Saturn [64] Shut down19701970–?Torsatron Flag of the Soviet Union.svg Kharkiv Kharkiv Institute of Physics and Technology 0.36 m/0.08 m1 Tfirst Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT
Wendelstein 2-BShut down ?–19701971–?Heliotron Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 0.5 m/0.055 m1.25 TDemonstrated similar performance as tokamaks W7x 026.jpg
Vint-20 [65] Shut down19721973–?Torsatron Flag of the Soviet Union.svg Kharkiv Kharkiv Institute of Physics and Technology 0.315 m/0.0725 m1.8 Tsingle-pole ℓ=1, m=13 field periods
L-2Shut down ?1975–? Flag of the Soviet Union.svg Moscow Lebedev Physical Institute 1 m/0.11 m2.0 T
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung)Recycled →HIDRA 1972–19751975–2013Classical stellarator Flag of Germany.svg Greifswald Max-Planck-Institut für Plasmaphysik 0.72 m/0.15 m1.4 TTest lower hybrid heating WEGA-Stuttgart.jpg
Wendelstein 7-AShut down ?1975–1985Classical stellarator Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 2 m/0.1 m3.5 TFirst "pure" stellarator without plasma current, solved stellarator heating problem
Heliotron-EShut down ?1980–?Heliotron Flag of Japan.svg 2.2 m/0.2 m1.9 T
Heliotron-DRShut down ?1981–?Heliotron Flag of Japan.svg 0.9 m/0.07 m0.6 T
Uragan-3 (M  [ uk ]) [66] Operational ?1982–? [67]
M: 1990–
Torsatron Flag of Ukraine.svg Kharkiv National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.0 m/0.12 m1.3 T ?
Auburn Torsatron (AT)Shut down ?1984–1990Torsatron Flag of the United States.svg Auburn Auburn University 0.58 m/0.14 m0.2 T Auburn Torsatron.jpg
Wendelstein 7-AS Shut down1982–19881988–2002Modular, advanced stellarator Flag of Germany.svg Garching Max-Planck-Institut für Plasmaphysik 2 m/0.13 m2.6 TFirst computer-optimized stellarator, first H-mode in a stellarator in 1992 Garching Experiment Wendelstein 7-AS.jpg
Advanced Toroidal Facility (ATF)Shut down1984–1988 [68] 1988–1994Torsatron Flag of the United States.svg Oak Ridge Oak Ridge National Laboratory 2.1 m/0.27 m2.0 TFirst large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operation Advanced Toroidal Facility, 1986 (49743086486).png
Compact Helical System (CHS)Shut down ?1989–?Heliotron Flag of Japan.svg Toki National Institute for Fusion Science 1 m/0.2 m1.5 T
Compact Auburn Torsatron (CAT)Shut down ?–19901990–2000Torsatron Flag of the United States.svg Auburn Auburn University 0.53 m/0.11 m0.1 TStudy magnetic flux surfaces CATphoto2.jpg
H-1 (Heliac-1) [69] Operational1992–Heliac Flag of Australia (converted).svg Canberra,
Flag of the People's Republic of China.svg
Research School of Physical Sciences and Engineering, Australian National University 1.0 m/0.19 m0.5 Tshipped to China in 2017 H1 Heliac.jpg
TJ-K (Tokamak de la Junta Kiel) [70] OperationalTJ-IU (1999)1994–Torsatron Flag of Germany.svg Kiel, Stuttgart University of Stuttgart 0.60 m/0.10 m0.5 TOne helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005
TJ-II (Tokamak de la Junta II) [71] Operational1991–19961997–flexible Heliac Flag of Spain.svg MadridNational Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas 1.5 m/0.28 m1.2 TStudy plasma in flexible configuration TJ-II model including plasma, coils and vacuum vessel.jpg
LHD (Large Helical Device) [72] Operational1990–19981998–Heliotron Flag of Japan.svg Toki National Institute for Fusion Science 3.5 m/0.6 m3 TDemonstrated long-term operation of large superconducting coils LHD Querschnitt.png
HSX (Helically Symmetric Experiment) [73] Operational1999–Modular, quasi-helically symmetric Flag of the United States.svg Madison University of Wisconsin–Madison 1.2 m/0.15 m1 TInvestigate plasma transport in quasi-helically-symmetric field, similar to tokamaks HSX picture.jpg
Heliotron J [74] Operational2000–Heliotron Flag of Japan.svg Kyoto Institute of Advanced Energy 1.2 m/0.1 m1.5 TStudy helical-axis heliotron configuration
Columbia Non-neutral Torus (CNT)Operational ?2004–Circular interlocked coils Flag of the United States.svg New York City Columbia University 0.3 m/0.1 m0.2 TStudy of non-neutral (mostly electron) plasmas
Uragan-2(M) [66] Operational1988–20062006– [75] Heliotron, Torsatron Flag of Ukraine.svg Kharkiv National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.7 m/0.22 m2.4 Tℓ=2 Torsatron
Quasi-poloidal stellarator (QPS) [76] [77] Cancelled2001–2007Modular Flag of the United States.svg Oak Ridge Oak Ridge National Laboratory 0.9 m/0.33 m1.0 TStellarator research Quasi-Poloidal Stellarator 3d render.jpg
NCSX (National Compact Stellarator Experiment)Cancelled2004–2008Helias Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 1.4 m/0.32 m1.7 THigh-β stability NCSXmachine.jpg
Compact Toroidal Hybrid (CTH)Operational ?2007?–Torsatron Flag of the United States.svg Auburn Auburn University 0.75 m/0.2 m0.7 THybrid stellarator/tokamak Compact Toroidal Hybrid at Auburn University.jpg
HIDRA (Hybrid Illinois Device for Research and Applications) [78] Operational2013–2014 (WEGA)2014– ? Flag of the United States.svg Urbana, IL University of Illinois 0.72 m/0.19 m0.5 TStellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactions HIDRA.jpg
UST_2 [79] Operational20132014–modular three period quasi-isodynamic Flag of Spain.svg Madrid Charles III University of Madrid 0.29 m/0.04 m0.089 T 3D-printed stellarator UST 2 stellarator concept and design.jpg
Wendelstein 7-X [80] Operational1996–20222015–Helias Flag of Germany.svg Greifswald Max-Planck-Institut für Plasmaphysik 5.5 m/0.53 m3 TSteady-state plasma in large fully optimized stellarator Schematic diagram of Wendelstein 7-X.jpg
SCR-1 (Stellarator of Costa Rica)Operational2011–20152016–Modular Flag of Costa Rica.svg Cartago Costa Rica Institute of Technology 0.14 m/0.042 m0.044 T SCR-1 vacuum vessel drawing.jpg
MUSE [81] Operational2022–20232023–Quasiaxi-symmetrical Flag of the United States.svg Princeton Princeton Plasma Physics Laboratory 0.3 m/0.075 m0.15 TFirst stellarator with permanent magnets Design and construction of the MUSE permanent magnet stellarator - Fig21 (cropped).jpg
CFQS (Chinese First Quasi-Axisymmetric Stellarator) [82] Under construction2017–Helias Flag of the People's Republic of China.svg ChengduSouthwest Jiaotong University, National Institute for Fusion Science in Japan1 m/0.25 m1 Tm=2 quasi-axisymmetric stellarator, modular CFQS coils Bfield Su2020.jpg
EFPP (European Fusion Power Plant) [83] Planned2030 ?2045 ?Helias Flag of Germany.svg Gauss Fusion7–9 T ?Fusion power plant with 2–3 GW output

Magnetic mirror

Toroidal Z-pinch

  • Perhapsatron (1953, USA)
  • ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)

Reversed field pinch (RFP)

Spheromak

Field-reversed configuration (FRC)

Other toroidal machines

  • TMP (Tor s Magnitnym Polem, torus with magnetic field): A porcelain torus with major radius 80 cm, minor radius 13 cm, toroidal field of 1.5 T and plasma current 0.25 MA, predecessor to the first tokamak (1955, USSR)

Open field lines

Plasma pinch

Levitated dipole

Inertial confinement

Laser-driven

Device nameStatusConstructionOperationDescriptionPeak laser powerPulse energyFusion yieldLocationOrganisationImage
4 pi laser Shut down196?Semiconductor laser5 GW12 J Flag of the United States.svg Livermore LLNL
Long path laser Shut down19721972First ICF laser with neodymium doped glass (Nd:glass) as lasing medium5 GW50 J Flag of the United States.svg Livermore LLNL
Single Beam System (SBS) "67"Shut down1971-19731973Single-beam CO2 laser [89] 200 GW1 kJ Flag of the United States.svg Los Alamos LANL
Double Bounce Illumination System (DBIS)Shut down1972-19741974-1990First private laser fusion effort, YAG laser, neutron yield 104 to 3×105 neutrons1 kJ100 nJ Flag of the United States.svg Ann Arbor, Michigan KMS Fusion Double Bounce System KMS Fusion 1974.png
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laserShut down1972-19751975-?Nd:glass laser100 GW40 J Flag of the United Kingdom.svg RAF Aldermaston AWE MERLIN target chamber.jpg
Cyclops laser Shut down19751975Single-beam Nd:glass laser, prototype for Shiva [90] 1 TW270 J Flag of the United States.svg Livermore LLNL Cyclops laser 1975.jpg
Janus laser Shut down1974-19751975Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium1 TW10 J Flag of the United States.svg Livermore LLNL Janus laser 1975.jpg
Gemini laser, Dual-Beam Module (DBM)Shut down≤ 19751976Two-beam CO2 laser, tests for Helios 5 TW2.5 kJ Flag of the United States.svg Los Alamos LANL
Argus laser Shut down19761976-1981Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva 4 TW2 kJ3 mJ Flag of the United States.svg Livermore LLNL Argus laser 1976.jpg
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra) [91] Operational1976-19771977-8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005 [92] 1 PW2.6 kJ Flag of the United Kingdom.svg Didcot RAL Green Lase.JPG
Shiva laser Shut down19771977-198120-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition30 TW10.2 kJ0.1 J Flag of the United States.svg Livermore LLNL Shiva laser target chamber.jpg
Helios laser, Eight-Beam System (EBS)Shut down1975-197819788-beam CO2 laser; Media at Wikimedia Commons20 TW10 kJ Flag of the United States.svg Los Alamos LANL U.S. Department of Energy - Science - 282 005 003 (16388751641).jpg
HELEN (High Energy Laser Embodying Neodymium)Shut down1976-19791979-2009Two-beam Nd:glass laser1 TW200 J Flag of the United Kingdom.svg Didcot RAL HELEN laser.jpg
ISKRA-4 Operational-19791979-8-beam iodine gas laser, prototype for ISKRA-5 [93] 10 TW2 kJ6 mJ Flag of the Soviet Union.svg Sarov RFNC-VNIIEF
Sprite laser [91] Shut down1981-19831983-1995First high-power Krypton fluoride laser used for target irradiation, λ=249 nm1 TW7.5 J Flag of the United Kingdom.svg Didcot RAL Sprite e-beam pumped amplifier cell 1982.jpg
Gekko XII Operational1983-12-beam, Nd:glass laser500 TW10 kJ Flag of Japan.svg Osaka Institute for Laser Engineering
Novette laser Shut down1981-19831983-1984Nd:glass laser to validate the Nova design, first X-ray laser [94] 13 TW18 kJ Flag of the United States.svg Livermore LLNL U.S. Department of Energy - Science - 281 004 001 (16315143010).jpg
Antares laser, High Energy Gas Laser Facility (HEGLF)Shut down1983 [95] 24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling [94] 200 TW40 kJ Flag of the United States.svg Los Alamos LANL
PHAROS laser Operational198?Two-beam Nd:glass laser300 GW1 kJ Flag of the United States.svg Washington D.C. NRL
Nova laser Shut down1984-199910-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF 1.3 PW120 kJ30 J Flag of the United States.svg Livermore LLNL
ISKRA-5 Operational-198912-beam iodine gas laser, fusion yield 1010 to 1011 neutrons [93] 100 TW30 kJ0.3 J Flag of the Soviet Union.svg Sarov RFNC-VNIIEF
Aurora laser Shut down≤ 1988-1989199096-beam Krypton fluoride laser 300 GW1.3 kJ Flag of the United States.svg Los Alamos LANL
PALS, formerly "Asterix IV"Operational-19911991- Iodine gas laser, λ=1315 nm3 TW1 kJ Flag of Germany.svg Garching,
Flag of the Czech Republic.svg Prague
MPQ, CAS Prague asterix laser system.jpeg
Trident laser Operational198?-19921992-20173-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns200 TW500 J Flag of the United States.svg Los Alamos LANL Alfoil.jpg
Nike laser Operational≤ 1991-19941994-56-beam, most-capable Krypton fluoride laser for laser target interactions [96] [97] 2.6 TW3 kJ Flag of the United States.svg Washington, D.C. NRL Nike laser amplifier.jpg
OMEGA laser Operational ?-19951995-60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons60 TW40 kJ300 J Flag of the United States.svg Rochester LLE
ElectraOperational Krypton fluoride laser, 5 Hz operation with 90,000+ shots continuous4 GW730 J Flag of the United States.svg Washington D.C. NRL Electra Laser System NRL 2013.png
LULI2000 Operational ?2003-6-beam Nd:glass laser, λ=1.06 μm, λ=0.53 μm, λ=0.26 μm500 GW600 J Flag of France.svg Palaiseau École polytechnique
OMEGA EP Operational2008-60-beam UV1.4 PW5 kJ Flag of the United States.svg Rochester LLE
National Ignition Facility (NIF)Operational1997-20092010-192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and 1.2×1018 neutrons [98] 500 TW2.05 MJ3.15 MJ Flag of the United States.svg Livermore LLNL NIF target chamber construction.jpg
Orion Operational2006-20102010-10-beams, λ=351 nm200 TW5 kJ Flag of the United Kingdom.svg RAF Aldermaston AWE Orion target chamber.jpg
Laser Mégajoule (LMJ)Operational1999-20142014-Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022 [99] 800 TW1 MJ Flag of France.svg Bordeaux CEA
Laser for Fast Ignition Experiments (LFEX)Operational2003-20152015-High-contrast heating laser for FIREX, λ=1053 nm2 PW10 kJ100 μJ Flag of Japan.svg Osaka Institute for Laser Engineering
HiPER (High Power Laser Energy Research Facility)Cancelled2007-2015-Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy [100] (4 PW)(270 kJ)(25 MJ) Flag of Europe.svg High Power Laser Energy Research Facility drawing.jpg
Laser Inertial Fusion Energy (LIFE)Cancelled2008-2013-Effort to develop a fusion power plant succeeding NIF (2.2 MJ)(40 MJ) Flag of the United States.svg Livermore LLNL LIFE fusion chamber.jpg
ISKRA-6 Planned ? ?128 beam Nd:glass laser300 TW?300 kJ? Flag of Russia.svg Sarov RFNC-VNIIEF

Z-pinch

Inertial electrostatic confinement

Magnetized target fusion

Related Research Articles

<span class="mw-page-title-main">Stellarator</span> Plasma device using external magnets to confine plasma

A stellarator is a device that confines plasma using external magnets. Scientists aim to use stellarators to achieve controlled nuclear fusion. It is one of many types of magnetic confinement fusion devices, the most common being the tokamak. The name "stellarator" refers to stars as fusion also occurs in stars such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror.

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field generated by external magnets to confine plasma in the shape of an axially-symmetrical torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. The tokamak concept is currently one of the leading candidates for a practical fusion reactor.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

<span class="mw-page-title-main">Large Helical Device</span>

The Large Helical Device (LHD) is a fusion research device located in Toki, Gifu, Japan. It is operated by the National Institute for Fusion Science, and is the world's second-largest superconducting stellarator, after Wendelstein 7-X. The LHD employs a heliotron magnetic field originally developed in Japan.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Field-reversed configuration</span> Magnetic confinement fusion reactor

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.

<span class="mw-page-title-main">Mega Ampere Spherical Tokamak</span> UK experimental fusion power reactor

Mega Ampere Spherical Tokamak (MAST) was a nuclear fusion experiment, testing a spherical tokamak nuclear fusion reactor, and commissioned by EURATOM/UKAEA. The original MAST experiment took place at the Culham Centre for Fusion Energy, Oxfordshire, England from December 1999 to September 2013. A successor experiment called MAST Upgrade began operation in 2020.

<span class="mw-page-title-main">Spheromak</span>

A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.

<span class="mw-page-title-main">Wendelstein 7-X</span> Modern stellarator for plasma fusion experiments

The Wendelstein 7-X reactor is an experimental stellarator built in Greifswald, Germany, by the Max Planck Institute for Plasma Physics (IPP), and completed in October 2015. Its purpose is to advance stellarator technology: though this experimental reactor will not produce electricity, it is used to evaluate the main components of a future fusion power plant; it was developed based on the predecessor Wendelstein 7-AS experimental reactor.

<span class="mw-page-title-main">Helically Symmetric Experiment</span>

The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.

The Tokamak de Fontenay-aux-Roses, TFR for short, was the first French tokamak, built in a research centre of the French Atomic Energy Commission (CEA) in Fontenay-aux-Roses, a commune in the southwestern suburbs of Paris. The project was spearheaded by Paul-Henri Rebut, and is sometimes jokingly referred to as the "Tokamak façon Rebut".

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

<span class="mw-page-title-main">Divertor</span> Magnetic confinement fusion device component

In magnetic confinement fusion, a divertor or diverted configuration is a magnetic field configuration of a tokamak or a stellarator which separates the confined plasma from the material surface of the device. The plasma particles which diffuse across the boundary of the confined region are diverted by the open, wall-intersecting magnetic field lines to wall structures which are called the divertor targets, usually remote from the confined plasma. The magnetic divertor extracts heat and ash produced by the fusion reaction, minimizes plasma contamination, and protects the surrounding walls from thermal and neutronic loads.

Robert James Goldston is a professor of astrophysics at Princeton University and a former director of the Princeton Plasma Physics Laboratory.

In plasma physics and magnetic confinement fusion, the high-confinement mode (H-mode) is a phenomenon and operating regime of enhanced confinement in toroidal plasma such as tokamaks. When the applied heating power is raised above some threshold, the plasma transitions from the low-confinement mode (L-mode) to the H-mode where the energy confinement time approximately doubles in magnitude. The H-mode was discovered by Friedrich Wagner and team in 1982 during neutral-beam heating experiments on ASDEX. It has since been reproduced in all major toroidal confinement devices, and is foreseen to be the standard operational scenario of ITER.

<span class="mw-page-title-main">Wendelstein 7-AS</span> Stellarator for plasma fusion experiments (1988-2002)

Wendelstein 7-AS was an experimental stellarator which was in operation from 1988 to 2002 by the Max Planck Institute for Plasma Physics (IPP) in Garching. It was the first of a new class of advanced stellarators with modular coils, designed with the goal of developing a nuclear fusion reactor to generate electricity.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

<span class="mw-page-title-main">Omnigeneity</span> A concept in stellarator physics

Omnigeneity is a property of a magnetic field inside a magnetic confinement fusion reactor. Such a magnetic field is called omnigenous if the path a single particle takes does not drift radially inwards or outwards on average. A particle is then confined to stay on a flux surface. All tokamaks are exactly omnigenous by virtue of their axisymmetry, and conversely an unoptimized stellarator is generally not omnigenous.

Low to High Confinement Mode Transition, more commonly referred to as L-H transition, is a phenomenon in the fields of plasma physics and magnetic confinement fusion, signifying the transition from less efficient plasma confinement to highly efficient modes. The L-H transition, a milestone in the development of nuclear fusion, enables the confinement of high-temperature plasmas. The transition is dependent on many factors such as density, magnetic field strength, heating method, plasma fueling, and edge plasma control, and is made possible through mechanisms such as edge turbulence, E×B shear, edge electric field, and edge current and plasma flow. Researchers studying this field use tools such as Electron Cyclotron Emission, Thomson Scattering, magnetic diagnostics, and Langmuir probes to gauge the PLH and seek to lower this value. This confinement is a necessary condition for sustaining the fusion reactions, which involve the combination of atomic nuclei, leading to the release of vast amounts of energy.

References

  1. "International tokamak research". ITER.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Smirnov, V.P. (30 December 2009). "Tokamak foundation in USSR/Russia 1950–1990". Nuclear Fusion. 50 (1): 014003. doi: 10.1088/0029-5515/50/1/014003 . eISSN   1741-4326. ISSN   0029-5515. S2CID   17487157.
  3. "Pulsator".
  4. 1 2 Taylor, R. J.; Lee, P.; Luhmann, N. C. Jr (1981). ICRF heating, particle transport and fluctuations in tokamaks (PDF) (Report). Archived from the original (PDF) on 2022-02-25.
  5. Argenti, D.; Bonizzoni, G.; Cirant, S.; Corti, S.; Grosso, G.; Lampis, G.; Rossi, L.; Carretta, U.; Jacchia, A.; De Luca, F.; Fontanesi, M. (June 1981). "The Thor tokamak experiment". Il Nuovo Cimento B. 63 (2): 471–486. Bibcode:1981NCimB..63..471A. doi:10.1007/BF02755093. eISSN   1826-9877. S2CID   123205206.
  6. Robert Arnoux (2009-05-18). "From Russia with love".
  7. "ASDEX". www.ipp.mpg.de.
  8. "Forschungszentrum Jülich – Plasmaphysik (IEK-4)". fz-juelich.de (in German).
  9. Progress in Fusion Research – 30 Years of TEXTOR
  10. "Tokamak Fusion Test Reactor". 2011-04-26. Archived from the original on 2011-04-26.
  11. Robert Arnoux (2018-06-18). "The second-hand market". ITER newsline.
  12. "EFDA-JET, the world's largest nuclear fusion research experiment". 2006-04-30. Archived from the original on 2006-04-30.
  13. ":::. Instituto Nacional de Investigaciones Nucleares | Fusión nuclear ". 2009-11-25. Archived from the original on 2009-11-25.
  14. "All-the-Worlds-Tokamaks". tokamak.info.
  15. Yoshikawa, M. (2006-10-02). "JT-60 Project". Fusion Technology 1978. 2: 1079. Bibcode:1979fute.conf.1079Y. Archived from the original on 2006-10-02.
  16. "diii-d:home [MFE: DIII-D and Theory]". fusion.gat.com. Retrieved 2018-09-04.
  17. "DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)". science.energy.gov. Retrieved 2018-09-04.
  18. "U of S". 2011-07-06. Archived from the original on 2011-07-06.
  19. "Tore Supra". www-fusion-magnetique.cea.fr. Retrieved 2018-09-04.
  20. "Tokamak Department, Institute of Plasma Physics". 2014-05-12. Archived from the original on 2014-05-12.
  21. "COMPASS – General information". 2013-10-25. Archived from the original on 2013-10-25.
  22. . 2006-04-24 https://web.archive.org/web/20060424061102/http://www.fusion.org.uk/culham/start.htm. Archived from the original on 2006-04-24.{{cite web}}: Missing or empty |title= (help)
  23. "MIT Plasma Science & Fusion Center: research>alcator>". 2015-07-09. Archived from the original on 2015-07-09.
  24. "Centro de Fusão Nuclear". cfn.ist.utl.pt. Archived from the original on 2010-03-07. Retrieved 2012-02-13.
  25. "EPFL". crppwww.epfl.ch.
  26. "Pegasus Toroidal Experiment". pegasus.ep.wisc.edu.
  27. "NSTX-U". nstx-u.pppl.gov. Retrieved 2018-09-04.
  28. "Globus-M experiment". globus.rinno.ru/ (in Russian). Retrieved 2021-10-23.
  29. "MAST – the Spherical Tokamak at UKAEA Culham". 2006-04-21. Archived from the original on 2006-04-21.
  30. "The SST-1 Tokamak Page". 2014-06-20. Archived from the original on 2014-06-20.
  31. "EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences". english.hf.cas.cn.
  32. "Chinese "Artificial Sun" experimental fusion reactor sets world record for superheated plasma time". The Nation. May 29, 2021.
  33. . 2008-05-30 https://web.archive.org/web/20080530221257/http://www.nfri.re.kr/. Archived from the original on 2008-05-30.{{cite web}}: Missing or empty |title= (help)
  34. McFadden, Christopher (29 March 2024). "South Korean 'artificial sun' reaches 7 times the Sun's core temperature". Interesting Engineering. Retrieved 30 March 2024.
  35. . 2013-11-10 https://web.archive.org/web/20131110043518/http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html. Archived from the original on 2013-11-10.{{cite web}}: Missing or empty |title= (help)
  36. "ST25 » Tokamak Energy". Archived from the original on 2019-03-26. Retrieved 2018-10-21.
  37. "ST40 » Tokamak Energy". Archived from the original on 2019-03-26. Retrieved 2018-10-21.
  38. "Status and Plans on MAST-U". 2016-12-13.
  39. "China completes new tokamak". 29 November 2019.
  40. "The JT-60SA project". www.jt60sa.org.
  41. "Ignited plasma in Tokamaks – The IGNITOR project". frascati.enea.it. Archived from the original on 2020-04-19.
  42. "Ignitor, il progetto del reattore nucleare italiano, è stato chiuso - Panorama". www.panorama.it (in Italian). Retrieved 2024-06-28.
  43. "Fusion technology breakthrough: China unveils first commercial "artificial sun" (photo)". NEWS.am TECH - Innovations and science. June 20, 2024. Retrieved 2024-06-22.
  44. Harris, Mark (October 4, 2023). "2023 Climate Tech Companies to Watch: Commonwealth and its compact tokamak". MIT Technology Review. Retrieved February 10, 2024.
  45. "SPARC at MIT Plasma Science and Fusion Center".
  46. Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.; Brunner, D.; Canik, J.; Doody, J.; Fülöp, T.; Garnier, D. T.; Granetz, R.; Gray, T. K.; Holland, C. (2020). "Overview of the SPARC tokamak". Journal of Plasma Physics. 86 (5). Bibcode:2020JPlPh..86e8602C. doi: 10.1017/S0022377820001257 . hdl: 1721.1/136131 . ISSN   0022-3778.
  47. Chesto, Jon (2021-03-03). "MIT energy startup homes in on fusion, with plans for 47-acre site in Devens". BostonGlobe.com. Retrieved 2021-03-03.
  48. Verma, Pranshu. Nuclear fusion power inches closer to reality. The Washington Post, August 26, 2022.
  49. "ITER – the way to new energy". ITER.
  50. "The DTT Project". Archived from the original on 2019-03-30. Retrieved 2020-02-21.
  51. "The new Divertor Tokamak Test facility" (PDF). Archived from the original (PDF) on 2020-02-21. Retrieved 2020-02-21.
  52. Antonella (2024-06-12). "Divertor Tokamak Test facility Research Plan Version 1.0". www.pubblicazioni.enea.it (in Italian). Retrieved 2024-06-28.
  53. Srinivasan, R. (2016). "Design and analysis of SST-2 fusion reactor". Fusion Engineering and Design. 112: 240–243. Bibcode:2016FusED.112..240S. doi:10.1016/j.fusengdes.2015.12.044. ISSN   0920-3796.
  54. Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Wan, B.N.; Duan, X.R.; Fu, P.; Xiao, B.J. (5 June 2019). "Progress of the CFETR design". Nuclear Fusion. 59 (11): 112010. Bibcode:2019NucFu..59k2010Z. doi:10.1088/1741-4326/ab0e27. eISSN   1741-4326. ISSN   0029-5515. S2CID   127585754.
  55. "Energy innovator reaches for the stars".
  56. "Tokamak Energy's fusion prototype to be built at UKAEA's campus". gov.uk. 2023-02-10.
  57. "Tokamak Energy's new advanced fusion prototype to be built at UKAEA's Culham Campus". tokamakenergy.com. 2023-02-10.
  58. "Tokamak to construct demo fusion reactor at Culham". World Nuclear News. 2023-02-10.
  59. STEP, UKAEA. "STEP Project Partner Slide Deck". STEP UKAEA Portal. Retrieved 2023-04-04.
  60. Tobita, Kenji; Hiwatari, Ryoji; Sakamoto, Yoshiteru; Someya, Youji; Asakura, Nobuyuki; Utoh, Hiroyasu; Miyoshi, Yuya; Tokunaga, Shinsuke; Homma, Yuki; Kakudate, Satoshi; Nakajima, Noriyoshi; for Fusion DEMO, the Joint Special Design Team (2019-07-04). "Japan's Efforts to Develop the Concept of JA DEMO During the Past Decade". Fusion Science and Technology. 75 (5): 372–383. Bibcode:2019FuST...75..372T. doi: 10.1080/15361055.2019.1600931 . ISSN   1536-1055. S2CID   164357381.
  61. Iwai, Yasunori; Edao, Yuki; Kurata, Rie; Isobe, Kanetsugu (2021-05-01). "Basic concept of JA DEMO fuel cycle". Fusion Engineering and Design. 166: 112261. Bibcode:2021FusED.16612261I. doi:10.1016/j.fusengdes.2021.112261. ISSN   0920-3796. S2CID   233566366.
  62. Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C. (2015). "Design concept of K-DEMO for near-term implementation". Nuclear Fusion. 55 (5): 053027. Bibcode:2015NucFu..55e3027K. doi: 10.1088/0029-5515/55/5/053027 . ISSN   0029-5515.
  63. 1 2 3 4 5 Lees, D.J. (1 September 1985). "Culham stellarator programme, 1965–1980". Nuclear Fusion. 25 (9): 1259–1265. doi:10.1088/0029-5515/25/9/044. eISSN   1741-4326. ISSN   0029-5515. S2CID   119660036.
  64. Georgiyevskiy, A. V.; Solodovchenko, S. I.; Voitsenya, V. S. (13 February 2010). "Contributions of the "Saturn" to Modern Stellarator-Torsatron Research". Journal of Fusion Energy. 29 (4): 399–406. Bibcode:2010JFuE...29..399G. doi:10.1007/s10894-010-9284-0. eISSN   1572-9591. ISSN   0164-0313. S2CID   123305093.
  65. Georgievskii, A. V.; Suprunenko, V. A.; Sukhomlin, E. A. (May 1973). "Vint-20 single-helix torsatron machine with three-dimensional magnetic axis". Soviet Atomic Energy. 34 (5): 518–519. doi:10.1007/BF01163768. eISSN   1573-8205. ISSN   0038-531X. S2CID   94405830.
  66. 1 2 "History | ННЦ ХФТИ". kipt.kharkov.ua.
  67. "Uragan-3M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  68. "ORNL Review v17n3 1984.pdf | ORNL". www.ornl.gov.
  69. Department, Head of; prl@physics.anu.edu.au. "Plasma Research Laboratory – PRL – ANU". prl.anu.edu.au. Archived from the original on 2010-02-13. Retrieved 2005-12-26.
  70. "TJ-K – FusionWiki". fusionwiki.ciemat.es.
  71. CIEMAT. "Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas". ciemat.es (in Spanish).
  72. "Large Helical Device Project". lhd.nifs.ac.jp. Archived from the original on 2010-04-12. Retrieved 2006-04-20.
  73. "HSX – Helically Symmetric eXperiment". hsx.wisc.edu.
  74. "Heliotron J Project". iae.kyoto-u.ac.jp/en/joint/heliotron-j.html.
  75. "Uragan-2M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  76. "QPS Home Page". Archived from the original on 2016-04-24. Retrieved 2018-09-01.
  77. http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf
  78. "HIDRA – Hybrid Illinois Device for Research and Applications | CPMI – Illinois". cpmi.illinois.edu.
  79. "Vying Fusion Energy - V. Queral". www.fusionvic.org.
  80. "Wendelstein 7-X". ipp.mpg.de/w7x.
  81. T.M. Qian, X. Chu, C. Pagano, D. Patch, M.C. Zarnstorff, B. Berlinger, D. Bishop, A. Chambliss, M. Haque, D. Seidita, C. Zhu (2023-10-31). "Design and construction of the MUSE permanent magnet stellarator". Journal of Plasma Physics. 89 (5): 955890502. Bibcode:2023JPlPh..89e9502Q. doi: 10.1017/S0022377823000880 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. KINOSHITA, Shigeyoshi; SHIMIZU, Akihiro; OKAMURA, Shoichi; ISOBE, Mitsutaka; XIONG, Guozhen; LIU, Haifeng; XU, Yuhong; The CQFS Team (2019-06-03). "Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)". Plasma and Fusion Research. 14: 3405097. Bibcode:2019PFR....1405097K. doi: 10.1585/pfr.14.3405097 . ISSN   1880-6821.
  83. "Introduction to the Gauss Fusion Initiative" (PDF). 2022-12-08.
  84. "CONSORZIO RFX – Ricerca Formazione Innovazione". igi.cnr.it. Archived from the original on 2009-09-01. Retrieved 2018-04-16.
  85. Hartog, Peter Den. "MST – UW Plasma Physics". plasma.physics.wisc.edu. Archived from the original on 2019-03-13. Retrieved 2013-02-28.
  86. Liu, Wandong; et, al. (2017). "Overview of Keda Torus eXperiment initial results". Nuclear Fusion. 57 (11): 116038. Bibcode:2017NucFu..57k6038L. doi:10.1088/1741-4326/aa7f21. ISSN   0029-5515. S2CID   116431906.
  87. "Report Oct 15, 2021" (PDF). 2021-10-15. Archived (PDF) from the original on 2021-10-25.
  88. "Levitated Dipole Experiment". 2004-08-23. Archived from the original on 2004-08-23.
  89. F Skoberne (July 1967). "Los Alamos Laser Fusion Program" (PDF).
  90. "Beam-propagation studies on Cyclops" (PDF). February 1976.
  91. 1 2 Danson, Colin N.; et al. (2021). "A history of high-power laser research and development in the United Kingdom". High Power Laser Science and Engineering. 9. Bibcode:2021HPLSE...9E..18D. doi: 10.1017/hpl.2021.5 . eISSN   2052-3289. hdl: 10044/1/89337 . ISSN   2095-4719. S2CID   233401354.
  92. "CLF Get to know the CLF Lasers".
  93. 1 2 "RFNC-VNIIEF – Science – Laser physics". 2005-04-06. Archived from the original on 2005-04-06.
  94. 1 2 Hora, Heinrich; Miley, George H, eds. (1984). Laser Interaction and Related Plasma Phenomena. Springer US. doi:10.1007/978-1-4615-7332-6. ISBN   978-1-4615-7334-0.
  95. Schwarzschild, Bertram M. (1984). "Fusion experiments have begun at Antares". Physics Today. 37 (9): 19. Bibcode:1984PhT....37i..19S. doi:10.1063/1.2916397.
  96. Lehecka, T.; Bodner, S.; Deniz, A. V.; Mostovych, A. N.; Obenschain, S. P.; Pawley, C. J.; Pronko, M. S. (December 1991). "The NIKE KrF laser fusion facility". Journal of Fusion Energy. 10 (4): 301–303. Bibcode:1991JFuE...10..301L. doi:10.1007/BF01052128. eISSN   1572-9591. ISSN   0164-0313. S2CID   122087249.
  97. Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max; et al. (19 August 2015). "High-energy krypton fluoride lasers for inertial fusion". Applied Optics. 54 (31): F103-22. Bibcode:2015ApOpt..54F.103O. doi:10.1364/AO.54.00F103. eISSN   1539-4522. ISSN   0003-6935. PMID   26560597.
  98. CLERY, DANIEL (13 December 2022). "With historic explosion, a long sought fusion breakthrough". www.science.org. Retrieved 2022-12-14.
  99. "CEA – Laser Mégajoule". www-lmj.cea.fr.
  100. "The HiPER Project". Archived from the original on 2022-12-23.
  101. "University of Nevada, Reno. Nevada Terawatt Facility". archive.is. 2000-09-19. Archived from the original on 2000-09-19.
  102. "Sandia National Laboratories: National Security Programs". sandia.gov.
  103. "PULSOTRON". pulsotron.org. Archived from the original on 2019-04-01. Retrieved 2020-03-09.

See also