In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. [1] A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons (i.e., a thermal system) or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.
88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | |||||||||||||||||||
154 |
| 250 Cm | 252 Cf | 154 | ||||||||||||||||||||||||||
153 | 251 Cf | 252 Es | 153 | |||||||||||||||||||||||||||
152 | 248 Cm | 250 Cf | 152 | |||||||||||||||||||||||||||
151 | 247 Cm | 248 Bk | 249 Cf | 151 | ||||||||||||||||||||||||||
150 | 244 Pu | 246 Cm | 247 Bk | 150 | ||||||||||||||||||||||||||
149 | 245 Cm | 149 | ||||||||||||||||||||||||||||
148 | 242 Pu | 243 Am | 244 Cm | 148 | ||||||||||||||||||||||||||
147 | 241 Pu | 242m ⁂ | 243 Cm | 147 | ||||||||||||||||||||||||||
146 | 238 U | 240 Pu | 241 Am | 146 | ||||||||||||||||||||||||||
145 | 239 Pu | 145 | ||||||||||||||||||||||||||||
144 | 236 U | 237 Np | 238 Pu | 144 | ||||||||||||||||||||||||||
143 | 235 U | 236 Np | 143 | |||||||||||||||||||||||||||
142 | 232 Th | 234 U | 235 Np | 236 Pu | 142 | |||||||||||||||||||||||||
141 | 233 U | 141 | ||||||||||||||||||||||||||||
140 | 228 Ra | 230 Th | 231 Pa | 232 U |
| 140 | ||||||||||||||||||||||||
139 | 229 Th | 139 | ||||||||||||||||||||||||||||
138 | 226 Ra | 227 Ac | 228 Th | 138 | ||||||||||||||||||||||||||
88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | |||||||||||||||||||
Only nuclides with a half-life of at least one year are shown on this table. |
The term fissile is distinct from fissionable. A nuclide that can undergo nuclear fission (even with a low probability) after capturing a neutron of high or low energy [2] is referred to as fissionable. A fissionable nuclide that can undergo fission with a high probability after capturing a low-energy thermal neutron is referred to as fissile. [3] Fissionable materials include those (such as uranium-238) for which fission can be induced only by high-energy neutrons. As a result, fissile materials (such as uranium-235) are a subset of fissionable materials.
Uranium-235 fissions with low-energy thermal neutrons because the binding energy resulting from the absorption of a neutron is greater than the critical energy required for fission; therefore uranium-235 is fissile. By contrast, the binding energy released by uranium-238 absorbing a thermal neutron is less than the critical energy, so the neutron must possess additional energy for fission to be possible. Consequently, uranium-238 is fissionable but not fissile. [4] [5]
An alternative definition defines fissile nuclides as those nuclides that can be made to undergo nuclear fission (i.e., are fissionable) and also produce neutrons from such fission that can sustain a nuclear chain reaction in the correct setting. Under this definition, the only nuclides that are fissionable but not fissile are those nuclides that can be made to undergo nuclear fission but produce insufficient neutrons, in either energy or number, to sustain a nuclear chain reaction. As such, while all fissile isotopes are fissionable, not all fissionable isotopes are fissile. In the arms control context, particularly in proposals for a Fissile Material Cutoff Treaty, the term fissile is often used to describe materials that can be used in the fission primary of a nuclear weapon. [6] These are materials that sustain an explosive fast neutron nuclear fission chain reaction.
Under all definitions above, uranium-238 (238
U
) is fissionable, but not fissile. Neutrons produced by fission of 238
U
have lower energies than the original neutron (they behave as in an inelastic scattering), usually below 1 MeV (i.e., a speed of about 14,000 km/s), the fission threshold to cause subsequent fission of 238
U
, so fission of 238
U
does not sustain a nuclear chain reaction.
Fast fission of 238
U
in the secondary stage of a thermonuclear weapon, due to the production of high-energy neutrons from nuclear fusion, contributes greatly to the yield and to fallout of such weapons. Fast fission of 238
U
tampers has also been evident in pure fission weapons. [7] The fast fission of 238
U
also makes a significant contribution to the power output of some fast-neutron reactors.
Actinides [8] by decay chain | Half-life range (a) | Fission products of 235U by yield [9] | ||||||
---|---|---|---|---|---|---|---|---|
4n | 4n + 1 | 4n + 2 | 4n + 3 | 4.5–7% | 0.04–1.25% | <0.001% | ||
228 Ra№ | 4–6 a | 155 Euþ | ||||||
248 Bk [10] | > 9 a | |||||||
244 Cmƒ | 241 Puƒ | 250 Cf | 227 Ac№ | 10–29 a | 90 Sr | 85 Kr | 113m Cdþ | |
232 Uƒ | 238 Puƒ | 243 Cmƒ | 29–97 a | 137 Cs | 151 Smþ | 121m Sn | ||
249 Cfƒ | 242m Amƒ | 141–351 a | No fission products have a half-life | |||||
241 Amƒ | 251 Cfƒ [11] | 430–900 a | ||||||
226 Ra№ | 247 Bk | 1.3–1.6 ka | ||||||
240 Pu | 229 Th | 246 Cmƒ | 243 Amƒ | 4.7–7.4 ka | ||||
245 Cmƒ | 250 Cm | 8.3–8.5 ka | ||||||
239 Puƒ | 24.1 ka | |||||||
230 Th№ | 231 Pa№ | 32–76 ka | ||||||
236 Npƒ | 233 Uƒ | 234 U№ | 150–250 ka | 99 Tc₡ | 126 Sn | |||
248 Cm | 242 Pu | 327–375 ka | 79 Se₡ | |||||
1.33 Ma | 135 Cs₡ | |||||||
237 Npƒ | 1.61–6.5 Ma | 93 Zr | 107 Pd | |||||
236 U | 247 Cmƒ | 15–24 Ma | 129 I₡ | |||||
244 Pu | 80 Ma | ... nor beyond 15.7 Ma [12] | ||||||
232 Th№ | 238 U№ | 235 Uƒ№ | 0.7–14.1 Ga | |||||
|
In general, most actinide isotopes with an odd neutron number are fissile. Most nuclear fuels have an odd atomic mass number (A = Z + N = the total number of nucleons), and an even atomic number Z. This implies an odd number of neutrons. Isotopes with an odd number of neutrons gain an extra 1 to 2 MeV of energy from absorbing an extra neutron, from the pairing effect which favors even numbers of both neutrons and protons. This energy is enough to supply the needed extra energy for fission by slower neutrons, which is important for making fissionable isotopes also fissile.
More generally, nuclides with an even number of protons and an even number of neutrons, and located near a well-known curve in nuclear physics of atomic number vs. atomic mass number are more stable than others; hence, they are less likely to undergo fission. They are more likely to "ignore" the neutron and let it go on its way, or else to absorb the neutron but without gaining enough energy from the process to deform the nucleus enough for it to fission. These "even-even" isotopes are also less likely to undergo spontaneous fission, and they also have relatively much longer partial half-lives for alpha or beta decay. Examples of these isotopes are uranium-238 and thorium-232. On the other hand, other than the lightest nuclides, nuclides with an odd number of protons and an odd number of neutrons (odd Z, odd N) are usually short-lived (a notable exception is neptunium-236 with a half-life of 154,000 years) because they readily decay by beta-particle emission to their isobars with an even number of protons and an even number of neutrons (even Z, even N) becoming much more stable. The physical basis for this phenomenon also comes from the pairing effect in nuclear binding energy, but this time from both proton–proton and neutron–neutron pairing. The relatively short half-life of such odd-odd heavy isotopes means that they are not available in quantity and are highly radioactive.
According to the fissility rule proposed by Yigal Ronen, for a heavy element with Z between 90 and 100, an isotope is fissile if and only if 2 × Z − N ∈ {41, 43, 45} (where N = number of neutrons and Z = number of protons), with a few exceptions. [13] [14] This rule holds for all but fourteen nuclides – seven that satisfy the criterion but are nonfissile, and seven that are fissile but do not satisfy the criterion. [note 1]
To be a useful fuel for nuclear fission chain reactions, the material must:
Thermal neutrons [15] | Epithermal neutrons | |||||
---|---|---|---|---|---|---|
σF (b) | σγ (b) | % | σF (b) | σγ (b) | % | |
531 | 46 | 8.0% | 233U | 760 | 140 | 16% |
585 | 99 | 14.5% | 235U | 275 | 140 | 34% |
750 | 271 | 26.5% | 239Pu | 300 | 200 | 40% |
1010 | 361 | 26.3% | 241Pu | 570 | 160 | 22% |
Fissile nuclides in nuclear fuels include:
Fissile nuclides do not have a 100% chance of undergoing fission on absorption of a neutron. The chance is dependent on the nuclide as well as neutron energy. For low and medium-energy neutrons, the neutron capture cross sections for fission (σF), the cross section for neutron capture with emission of a gamma ray (σγ), and the percentage of non-fissions are in the table at right.
Fertile nuclides in nuclear fuels include:
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.
Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.
A natural nuclear fission reactor is a uranium deposit where self-sustaining nuclear chain reactions occur. The idea of a nuclear reactor existing in situ within an ore body moderated by groundwater was briefly explored by Paul Kuroda in 1956. The existence of an extinct or fossil nuclear fission reactor, where self-sustaining nuclear reactions have occurred in the past, are established by analysis of isotope ratios of uranium and of the fission products. The first such fossil reactor was first discovered in 1972 in Oklo, Gabon, by researchers from the French Alternative Energies and Atomic Energy Commission (CEA) when chemists performing quality control for the French nuclear industry noticed sharp depletions of fissionable 235
U
in gaseous uranium made from Gabonese ore.
Uranium-238 is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. 238U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of 238U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:
A subcritical reactor is a nuclear fission reactor concept that produces fission without achieving criticality. Instead of sustaining a chain reaction, a subcritical reactor uses additional neutrons from an outside source. There are two general classes of such devices. One uses neutrons provided by a nuclear fusion machine, a concept known as a fusion–fission hybrid. The other uses neutrons created through spallation of heavy nuclei by charged particles such as protons accelerated by a particle accelerator, a concept known as an accelerator-driven system (ADS) or accelerator-driven sub-critical reactor.
Uranium-234 is an isotope of uranium. In natural uranium and in uranium ore, 234U occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of 238U. Thus the ratio of 234
U to 238
U in a natural sample is equivalent to the ratio of their half-lives. The primary path of production of 234U via nuclear decay is as follows: uranium-238 nuclei emit an alpha particle to become thorium-234. Next, with a short half-life, 234Th nuclei emit a beta particle to become protactinium-234 (234Pa), or more likely a nuclear isomer denoted 234mPa. Finally, 234Pa or 234mPa nuclei emit another beta particle to become 234U nuclei.
Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption.
Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.
Uranium (92U) is a naturally occurring radioactive element (radioelement) with no stable isotopes. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).
Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be synthesized and identified was 239Np in 1940, produced by bombarding 238
U
with neutrons to produce 239
U
, which then underwent beta decay to 239
Np
.
Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty-two plutonium radioisotopes have been characterized. The most stable are 244Pu with a half-life of 80.8 million years; 242Pu with a half-life of 373,300 years; and 239Pu with a half-life of 24,110 years; and 240Pu with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.
The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.
Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.
Plutonium-241 is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes, 241Pu is fissile, with a neutron absorption cross section about one-third greater than that of 239Pu, and a similar probability of fissioning on neutron absorption, around 73%. In the non-fission case, neutron capture produces plutonium-242. In general, isotopes with an odd number of neutrons are both more likely to absorb a neutron and more likely to undergo fission on neutron absorption than isotopes with an even number of neutrons.
Uranium-236 is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.
Plutonium-242 is the second longest-lived isotope of plutonium, with a half-life of 375,000 years. The half-life of 242Pu is about 15 times that of 239Pu; so it is one-fifteenth as radioactive, and not one of the larger contributors to nuclear waste radioactivity. 242Pu's gamma ray emissions are also weaker than those of the other isotopes.
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.