A fiveling, also known as a decahedral nanoparticle, a multiply-twinned particle (MTP), a pentagonal nanoparticle, a pentatwin, or a five-fold twin is a type of twinned crystal that can exist at sizes ranging from nanometers to millimetres. It contains five different single crystals arranged around a common axis. In most cases each unit has a face centered cubic (fcc) arrangement of the atoms, although they are also known for other types of crystal structure.
They nucleate at quite small sizes in the nanometer range, but can be grown much larger. They have been found in mineralcrystals[a] excavated from mines such as pentagonite[2] or native gold from Ukraine,[3] in rods of metals grown via electrochemical processes and in nanoparticles produced by the condensation of metals either onto substrates or in inert gases. They have been investigated for their potential uses in areas such as improving the efficiency of solar cell or heterogeneous catalysis for more efficient production of chemicals. Information about them is distributed across a diverse range of scientific disciplines, mainly chemistry, materials science, mineralogy, nanomaterials and physics. Because many different names have been used, sometimes the information in the different disciplines or within any one discipline is fragmented and overlapping.
At small sizes in the nanometer range, up to millimetres in size, with fcc metals they often have a combination of {111} and {100} facets, a low energy shape called a Marks decahedron.[4][5] Relative to a single crystal, at small sizes a fiveling can be a lower energy structure due to having more low energy surface facets.[b] Balancing this there is an energy cost due to elastic strains to close an angular gap (disclination), which makes them higher in energy at larger sizes. They can be the most stable structure in some intermediate sizes, but they can be one among many in a population of different structures due to a combination of coexisting nanoparticles and kinetic growth factors. The temperature, gas environment and chemisorption can play an important role in both their thermodynamic stability and growth. While they are often symmetric, they can also be asymmetric with the disclination not in the center of the particle.
History
Dating back to the nineteenth century there are reports of these particles by authors such as Jacques-Louis Bournon in 1813 for marcasite,[9][10] and Gustav Rose in 1831 for gold.[6] In mineralogy and the crystal twinning literature they are referred to as a type of cyclic twin where a number of identical single crystal units are arranged in a ring-like pattern where they all join at a common point or line.[11] The name fiveling comes from them having five members (single crystals).[12] Fivelings have also been described as a type of macle twinning.[13] The older literature was mainly observational, with information on many materials documented by Victor Mordechai Goldschmidt in his Atlas der Kristallformen.[14] Drawings are available showing their presence in marcasite, gold, silver, copper and diamond. New mineral forms with a fiveling structure continue to be found, for instance pentagonite, whose structure was first decoded in 1973, is named because it is often found with the five-fold twinning.[2][15]
Most modern analysis started with the observation of these particles by Shozo Ino and Shiro Ogawa in 1966-67,[16][17] and independently but slightly later (which they acknowledged) in work by John Allpress and John Veysey Sanders.[18] In both cases these were for vacuum deposition of metal onto substrates in very clean (ultra-high vacuum) conditions, where nanoparticle islands of size 10-50nm were formed during thin film growth. Using transmission electron microscopy and diffraction these authors demonstrated the presence of the five single crystal units in the particles, and also the twin relationships. They also observed single crystals and a related type of icosahedral nanoparticle. They called the five-fold and icosahedral crystals multiply twinned particles (MTPs). In the early work near perfect decahedron (pentagonal bipyramid) and icosahedron shapes were formed, so they were called decahedral MTPs or icosahedral MTPs, the names connecting to the decahedral () and icosahedral () point group symmetries.[c] Parallel, and apparently independent there was work on larger metal whiskers (nanowires) which sometimes showed a very similar five-fold structure,[19][20] an occurrence reported in 1877 by Gerhard vom Rath.[21] There was fairly extensive analysis following this, particularly for the nanoparticles, both of their internal structure by some of the first electron microscopes that could image at the atomic scale,[22] and by various continuum or atomic models as cited later.
Following this early work there was a large effort, mainly in Japan, to understand what were then called "fine particles", but would now be called nanoparticles. By heating up different elements so atoms evaporated and were then condensed in an inert argon atmosphere, fine particles of almost all the elemental solids were made and then analyzed using electron microscopes. The decahedral particles were found for all face centered cubic materials and a few others, often together with other shapes.[23][24][25]
While there was some continuing work over the following decades, it was with the National Nanotechnology Initiative[27] that substantial interest was reignited. At the same time terms such as pentagonal nanoparticle, pentatwin, or five-fold twin became common in the literature, together with the earlier names. A large number of different methods have now been published for fabricating fivelings, sometimes with a high yield but often as part of a larger population of different shapes.[28] These range from colloidal solution methods[29] to different deposition approaches.[23][30] It is documented that fivelings occur frequently for diamond,[31][32] gold and silver,[33] sometimes for copper[34][35] or palladium[36][37] and less often for some of the other face-centered cubic (fcc) metals such as nickel.[4] There are also cases such as pentagonite where the crystal structure allows for five-fold twinning with minimal to no elastic strain (see later).[2] There is work where they have been observed in colloidal crystals consisting of ordered arrays of nanoparticles,[38][39] and single crystals composed on individual decahedral nanoparticles.[40] There has been extensive modeling by many different approaches such as embedded atom,[4] many body,[41]molecular dynamics,[42]tight binding approaches,[43] and density functional theory methods[44] as discussed by Francesca Baletto and Riccardo Ferrando[45] and also discussed for energy landscapes later.
Disclination strain
These particles consist of five different (single crystal) units which are joined together by twin boundaries. The simplest form shown in the figure has five tetrahedral crystals which most commonly have a face centered cubic structure, but there are other possibilities such as diamond cubic and a few others as well as more complex shapes. The angle between two twin planes is approximately 70.5 degrees in fcc, so five of these sums to 352.5 degrees (not 360 degrees) leading to an angular gap. At small sizes this gap is closed by an elastic deformation, which Roland de Wit pointed out[46][47] could be described as a wedge disclination, a type of defect first discussed by Vito Volterra in 1907.[48] With a disclination the strains to close the gap vary radially and are distributed throughout the particle.
With other structures the angle can be different; marcasite has a twin angle of 74.6 degrees, so instead of closing a missing wedge, one of angle 13 degrees has to be opened, which would be termed a negative disclination of 13 degrees. It has been pointed out by Chao Liang and Yi Yu[49] that when intermetallics are included there is a range of different angles, some similar to fcc where there is a deficiency (positive disclination), others such as AuCu where there is an overlap (negative disclination) similar to marcasite,[9][50] while pentagonite has probably the smallest overlap at 3.5 degrees.[2]
Early experimental high-resolution transmission electron microscopy data[22] supported the idea of a distributed disclination strain field in the nanoparticles, as did dark field and other imaging modes in electron microscopes.[52] In larger particles dislocations have been detected to relieve some of the strain.[53][24][54][55] The disclination deformation requires an energy which scales with the particle volume, so dislocations or grain boundaries are lower in energy for large sizes.[56]
More recently there has been detailed analysis of the atomic positions first by Craig Johnson et al,[57] followed up by a number of other authors,[58][59][60] providing more information on the strains and showing how they are distributed in the particles. While the classic disclination strain field is a reasonable first approximation model, there are differences when more complete elastic models are used such as finite element methods, particularly as pointed out by Johnson et al, anisotropic elasticity needs to be used.[57][61][60] One further complication is that the strain field is three dimensional, and more complex approaches are needed to measure the full details as detailed by Bart Goris et al, who also mention issues with strain from the support film.[62] In addition, as pointed out by Srikanth Patala, Monica Olvera de la Cruz and Marks[51] and shown in the figure, the Von Mises stress are different for (kinetic growth) pentagonal bipyramids versus the minimum energy shape.[51] As of 2024 the strains are consistent with finite element calculations and a disclination strain field, with the possible addition of a shear component at the twin boundaries to accommodate some of the strains.[57][59][60]
An alternative to the disclination strain model which was proposed by B G Bagley in 1965 for whiskers[63] is that there is a change in the atomic structure away from face-centered cubic; a hypothesis that a tetragonal crystal structure[64] is lower in energy than fcc, and a lower energy atomic structure leads to the decahedral particles. This view was expanded upon by Cary Y. Yang[65] and can also be found in some of the early work of Miguel José Yacamán.[66][67] There have been measurements of the average structure using X-ray diffraction which it has been argued support this view.[68] However, these x-ray measurements only see the average which necessarily shows a tetragonal arrangement, and there is extensive evidence for inhomogeneous deformations dating back to the early work of Allpress and Sanders,[18] Tsutomu Komoda,[22] Marks and David J. Smith[52] and more recently by high resolution imaging of details of the atomic structure.[57][58][59][60] As mentioned above, as of 2024 experimental imaging supports a disclination model with anisotropic elasticity.
Three-dimensional shape
The three-dimensional shape depends upon how the fivelings are formed, including the environment such as gas pressure and temperature. In the very early work only pentagonal bipyramids were reported.[16][17][18] In 1970 Ino tried to model the energetics, but found that these bipyramids were higher in energy than single crystals with a Wulff construction shape. He found a lower energy form where he added {100} facets,[70] what is now commonly called the Ino decahedron. The surface energy of this form and a related icosahedral twin scale as the two-thirds power of the volume, so they can be lower in energy than a single crystal as discussed further below.
However, while Ino was able to explain the icosahedral particles, he was not able to explain the decahedral ones. Later Laurence D. Marks proposed a model using both experimental data and a theoretical analysis, which is based upon a modified Wulff construction which includes more surface facets, including Ino's {100} as well as re-entrant {111} surfaces at the twin boundaries with the possibility of others such as {110}, while retaining the decahedral point group symmetry.[7][8][56] This approach also includes the effect of gas and other environmental factors via how they change the surface energy of different facets. By combining this model with de Wit's elasticity,[47]Archibald Howie and Marks were able to rationalize the stability of the decahedral to particles.[56] Other work soon confirmed the shape reported by Marks for annealed particles.[71] This was further confirmed in detailed atomistic calculations a few years later by Charles Cleveland and Uzi Landman who coined the term Marks decahedra for these shapes,[4] this name now being widely used.[25][33][72][73]
The minimum energy or thermodynamic shape for these particles[7][8] depends upon the relative surface energies of different facets, similar to a single crystal Wulff shape; they are formed by combining segments of a conventional Wulff construction with two additional internal facets to represent the twin boundaries.[8][7] An overview of codes to calculate these shapes was published in 2021 by Christina Boukouvala et al.[74] Considering just {111} and {100} facets:[7][8]
The Ino decahedron occurs when the surface energy of the {100} facets is small, ;
Common is the Marks decahedron with {100} facets and a re-entrant surface at the twin boundaries for
With there is no {100} faceting, and the particles have been called nanostars.[75]
For very low the equilibrium shape is a long rod along the common five-fold axis.
The photograph of an 0.5cm gold fiveling from Miass is a Marks decahedron with , while the sketch of Rose[6] is for . The 75 atom cluster shown above corresponds to the same shape for a small number of atoms. Experimentally, in fcc crystals fivelings with only {111} and {100} facets are common, but many other facets can be present in the Wulff construction leading to more rounded shapes,[8][72] for instance {113} facets for silicon.[76] It is known that the surface can reconstruct to a different atomic arrangement in the outermost atomic plane, for instance a dimer reconstruction for {100} facets of silicon particles[76] of a hexagonal overlayer on the {100} facets of gold decahedra.[72]
What shape is present depends not just on the surface energy of the different facets, but also upon how the particles grow. The thermodynamic shape is determined by the Wulff construction, which considers the energy of each possible surface facet and yields the lowest energy shape. The original Marks decahedron was based upon a form of Wulff construction that takes into account the twin boundaries.[7][8] There is a related kinetic Wulff construction where the growth rate of different surfaces is used instead of the energies.[69][78] This type of growth matters when the formation of a new island on a flat facet limits the growth rate.[79] If the {100} surfaces of Ino grow faster, then they will not appear in the final shape, similarly for the re-entrant surfaces at the twin boundaries—this leads to the pentagonal bipyramids often observed.[69] Alternatively, if the {111} surfaces grow fast and {100} slow the kinetic shape will be a long rod along the common five-fold axis as shown in the figure.[80][81][77][82]
Another different set of shapes can occur when diffusion of atoms to the particles dominates, a growth regime called diffusion controlled growth. In such cases surface curvature can play a major role,[84][78] for instance leading to spikes originating at the sharp corners of a pentagonal bipyramids, sometimes leading to pointy stars, as shown in the figure.[83]
Energy versus size
The most common approach to understand the formation of these particles, first used by Ino in 1969,[70] is to look at the energy as a function of size comparing icosahedral twins, decahedral nanoparticles and single crystals. The total energy for each type of particle can be written as the sum of three terms:
for a volume , where is the surface energy, is the disclination strain energy to close the gap (or overlap for marcasite and others), and is a coupling term for the effect of the strain on the surface energy via the surface stress,[85][86][87] which can be a significant contribution.[61] The sum of these three terms is compared to the total surface energy of a single crystal (which has no strain), and to similar terms for an icosahedral particle. Because the decahedral particles have a lower total surface energy than single crystals due (approximately, in fcc) to more low energy {111} surfaces, they are lower in total energy for an intermediate size regime, with the icosahedral particles more stable at very small sizes. (The icosahedral particle have even more {111} surfaces, but also more strain.[56]) At large sizes the strain energy can become very large, so it is energetically favorable to have dislocations and/or a grain boundary instead of a distributed strain.[55] The very large mineral samples are almost certainly trapped in metastable higher energy configurations.
There is no general consensus on the exact sizes when there is a transition in which type of particle is lowest in energy, as these vary with material and also the environment such as gas and temperature; the coupling surface stress term and also the surface energies of the facets are very sensitive to these.[88][89][90] In addition, as first described by Michael Hoare and P Pal[91] and R. Stephen Berry[92][93] and analyzed for these particles by Pulickel Ajayan and Marks[94] as well as discussed by others such as Amanda Barnard,[95]David J. Wales,[41][64][96]Kristen Fichthorn[97] and Baletto and Ferrando,[45] at very small sizes there will be a statistical population of different structures so many different ones will coexist. In many cases nanoparticles are believed to grow from a very small seed without changing shape, and reflect the distribution of coexisting structures.[28]
For systems where icosahedral and decahedral morphologies are both relatively low in energy, the competition between these structures has implications for structure prediction and for the global thermodynamic and kinetic properties. These result from a double funnel energy landscape[98][99] where the two families of structures are separated by a relatively high energy barrier at the temperature where they are in thermodynamic equilibrium. This situation arises for a cluster of 75 atoms with the Lennard-Jones potential, where the global potential energy minimum is decahedral, and structures based upon incomplete Mackay icosahedra[100] are also low in potential energy, but higher in entropy. The free energy barrier between these families is large compared to the available thermal energy at the temperature where they are in equilibrium. An example is shown in the figure, with probability in the lower part and energy above with axes of an order parameter and temperature . At low temperature the 75 atom decahedral cluster (Dh) is the global free energy minimum, but as the temperature increases the higher entropy of the competing structures based on incomplete icosahedra (Ic) causes the finite system analogue of a first-order phase transition; at even higher temperatures a liquid-like state is favored.[26]
There has been experiment support based upon work where single nanoparticles are imaged using electron microscopes either as they grow or as a function of time. One of the earliest works was that of Yagi et al[101] who directly observed changes in the internal structure with time during growth. More recent work has observed variations in the internal structure in liquid cells,[102] or changes between different forms due to either (or both) heating or the electron beam in an electron microscope[103][104][105] including substrate effects.[42]
Successive twinning
Allpress and Sanders proposed an alternative approach to energy minimization to understanding these particles called "successive twinning".[18] Here one starts with a single tetrahedral unit, which then forms a twin either by accident during growth or by collision with another tetrahedron. It was proposed that this could continue to eventually have five units join.[106]
The term "successive twinning" has now come to mean a related concept: motion of the disclination either to or from a symmetric position as sketched in the atomistic simulation in the figure;[106] see also Haiqiang Zhao et al[73] for very similar experimental images.
While in many cases experimental images show symmetric structures, sometimes they are less so and the five-fold center is quite asymmetric.[107][73] There are asymmetric cases which can be metastable,[7] and asymmetry can also be a strain relief process[108] or involved in how the particle convert to single crystals or from single crystals.[101][94] During growth there may be changes, as directly observed by Katsumichi Yagi et al for growth inside an electron microscope,[101] and migration of the disclination from the outside has been observed in liquid-cell studies in electron microscopes.[102] Extensive details about the atomic processes involved in motion of the disclination have been given using molecular dynamics calculations supported by density functional theory as shown in the figure.[106]
Connections
There are a number of related concepts and applications of decahedral particles.
Quasicrystals
Soon after the discovery of quasicrystals it was suggested by Linus Pauling[109][110] that five-fold cyclic twins such as these were the source of the electron diffraction data observed by Dan Shechtman.[111] While there are similarities, quasicrystals are now considered to be a class of packing which is different from fivelings and the related icosahedral particles.[112][113]
Heterogeneous catalysts
There are possible links to heterogeneous catalysis, with the decahedral particles displaying different performance.[114][115][58][116] The first study by Avery and Sanders[114] did not find them in automobile catalysts. Later work by Marks and Howie found them in silver catalysts,[115] and there have been other reports. It has been suggested that the strain at the surface can change reaction rates,[58] and since there is evidence that surface strain can change the adsorption of molecules and catalysis there is circumstantial support for this.[117][118]As of 2024[update], there is some experimental evidence for different catalytic reactivity.[119][116][120]
Plasmonics
It is known that the response of the surface plasmon polaritons in nanoparticles depends upon their shape.[121] As a consequence decahedral particles have specific optical responses.[122][123] One suggested use is to improve light adsorption using their plasmonic properties by adding them to polymer solar cells.[124]
Thin films and mechanical deformation
Most observations of fivelings have been for isolated particles. Similar structures can occur in thin films when particles merge to form a continuous coating, but do not recrystallize immediately.[126][127] They can also form during annealing of films,[128][129] which molecular dynamics simulations have indicated correlates to the motion of twin boundaries and a disclination,[130] similar to the case of isolated nanoparticles described earlier. There is experimental evidence in thin films for interactions between partial dislocations and disclinations,[131] as discussed in 1971 by de Wit.[46] They can also be formed by mechanical deformation.[125] The formation of a local fiveling structure by annealing or deformation has been attributed to a combination of stress relief and twin motion,[128][125][132] which is different from the surface energy driven formation of isolated particles described above.
↑ In mineralogy millimeter sized objects are normally referred to as crystals. In other areas the terms are different. When a fiveling has only a very few atoms, for instance the smallest which is seven, it would be called a cluster. They are also sometimes called nucleii or seeds. In the size range 2-100 nm they are currently called nanoparticles, although earlier names are small particles and fine particles.
↑ In the nanoparticle literature as well as physics and chemistry the term facet is common for flat external surfaces, which is how it is used herein. In the mineralogical literature the term facet is more commonly used for the external surfaces created on the surfaces of gemstones by cutting and polishing, and surface faces is used for native crystallographic surfaces such as {111}, which are also sometimes called natural facets.
↑ Common usage is to connect point group names to the corresponding shapes in two dimensions, such as pentagonal with pentagon, and polyhedra in three dimensions such as decahedral for a decahedron (pentagonal bipyramid) and icosahedral for icosahedron.
Related Research Articles
Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red or blue-purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.
A thin film is a layer of materials ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, integrated passive devices, light-emitting diodes, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled significantly below 0°C, it will tend to freeze into ice, but volumes of water cooled only a few degrees below 0°C often stay completely free of ice for long periods (supercooling). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice crystals appear after little or no delay.
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane.
Gold clusters in cluster chemistry can be either discrete molecules or larger colloidal particles. Both types are described as nanoparticles, with diameters of less than one micrometer. A nanocluster is a collective group made up of a specific number of atoms or molecules held together by some interaction mechanism. Gold nanoclusters have potential applications in optoelectronics and catalysis.
Ernst G. Bauer is a German-American physicist known for his studies in the field of surface science, thin film growth and nucleation mechanisms and the invention in 1962 of the Low Energy Electron Microscopy (LEEM). In the early 1990s, he extended the LEEM technique in two directions by developing Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM). He is currently Distinguished Research Professor Emeritus at the Arizona State University.
In crystallography, a disclination is a line defect in which there is compensation of an angular gap. They were first discussed by Vito Volterra in 1907, who provided an analysis of the elastic strains of a wedge disclination. By analogy to dislocations in crystals, the term, disinclination, was first used by Frederick Charles Frank and since then has been modified to its current usage, disclination. They have since been analyzed in some detail particularly by Roland deWit.
Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium.
The Wulff construction is a method to determine the equilibrium shape of a droplet or crystal of fixed volume inside a separate phase. Energy minimization arguments are used to show that certain crystal planes are preferred over others, giving the crystal its shape. It is of fundamental importance in a number of areas ranging from the shape of nanoparticles and precipitates to nucleation. It also has more applied relevance in areas such as the shapes of active particles in heterogeneous catalysis.
Surface stress was first defined by Josiah Willard Gibbs (1839–1903) as the amount of the reversible work per unit area needed to elastically stretch a pre-existing surface. Depending upon the convention used, the area is either the original, unstretched one which represents a constant number of atoms, or sometimes is the final area; these are atomistic versus continuum definitions. Some care is needed to ensure that the definition used is also consistent with the elastic strain energy, and misinterpretations and disagreements have occurred in the literature.
Nanodiamonds, or diamond nanoparticles, are diamonds with a size below 100 nanometers. They can be produced by impact events such as an explosion or meteoritic impacts. Because of their inexpensive, large-scale synthesis, potential for surface functionalization, and high biocompatibility, nanodiamonds are widely investigated as a potential material in biological and electronic applications and quantum engineering.
Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.
Spherical nucleic acids (SNAs) are nanostructures that consist of a densely packed, highly oriented arrangement of linear nucleic acids in a three-dimensional, spherical geometry. This novel three-dimensional architecture is responsible for many of the SNA's novel chemical, biological, and physical properties that make it useful in biomedicine and materials synthesis. SNAs were first introduced in 1996 by Chad Mirkin’s group at Northwestern University.
Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.
An icosahedral twin is a nanostructure found in atomic clusters and also nanoparticles with some thousands of atoms. The simplest form of these clusters is twenty interlinked tetrahedral crystals joined along triangular faces although more complex variants also occur. A related, more common structure has five units similarly arranged with twinning, which were known as "fivelings" in the 19th century, more recently as "decahedral multiply twinned particles", "pentagonal particles" or "star particles". A variety of different methods lead to the icosahedral form.
In materials science, vertically aligned carbon nanotube arrays (VANTAs) are a unique microstructure consisting of carbon nanotubes oriented with their longitudinal axis perpendicular to a substrate surface. These VANTAs effectively preserve and often accentuate the unique anisotropic properties of individual carbon nanotubes and possess a morphology that may be precisely controlled. VANTAs are consequently widely useful in a range of current and potential device applications.
A nanoparticle interfacial layer is a well structured layer of typically organic molecules around a nanoparticle. These molecules are known as stabilizers, capping and surface ligands or passivating agents. The interfacial layer has a significant effect on the properties of the nanoparticle and is therefore often considered as an integral part of a nanoparticle. The interfacial layer has a typical thickness between 0.1 and 4 nm, which is dependent on the type of the molecules the layer is made of. The organic molecules that make up the interfacial layer are often amphiphilic molecules, meaning that they have a polar head group combined with a non-polar tail.
Shape control in nanocrystal growth is the control of the shape of nanocrystals formed in their synthesis by means of varying reaction conditions. This is a concept studied in nanosciences, which is a part of both chemistry and condensed matter physics. There are two processes involved in the growth of these nanocrystals. Firstly, volume Gibbs free energy of the system containing the nanocrystal in solution decreases as the nanocrystal size increases. Secondly, each crystal has a surface Gibbs free energy that can be minimized by adopting the shape that is energetically most favorable. Surface energies of crystal planes are related to their Miller indices, which is why these can help predict the equilibrium shape of a certain nanocrystal.
Extended Wulff constructions refer to a number of variants of the Wulff construction which is used for a solid single crystal in isolation. They include cases for solid particle on substrates, those with twins and also when growth is important. They are important for many applications such as supported metal nanoparticles used in heterogeneous catalysis or for understanding the shape of twinned nanoparticles being explored for other applications such as drug delivery or optical communications. They are also relevant for macroscopic crystals with twins. Depending upon whether there are twins or a substrate there are different cases as indicated in the decision tree figure.
1 2 3 4 Staples, L. W.; Evans, H. T.; Lindsay, J. R. (1973). "Cavansite and Pentagonite, New Dimorphous Calcium Vanadium Silicate Minerals from Oregon". American Mineralogist. 58 (5–6): 405–411.
↑ Wynblatt, P.; Chatain, D. (2009). "Surface segregation anisotropy and the equilibrium crystal shape of alloy crystals". Reviews on Advanced Materials Science. 21: 44–56. S2CID137869647.
"Shape Software". www.shapesoftware.com. Retrieved 9 May 2024. The code can be used to generate thermodynamic Wulff shapes including twinning.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.