Icosahedral twins

Last updated
Annular dark-field image of a 5-fold twinned Au nanoparticle with a shape similar to a pentagonal bipyramid. Twin2.jpg
Annular dark-field image of a 5-fold twinned Au nanoparticle with a shape similar to a pentagonal bipyramid.
FCC icosahedral model projected down the 5-fold on the left and 3-fold zone axis orientation on the right. IcotwinModel.png
FCC icosahedral model projected down the 5-fold on the left and 3-fold zone axis orientation on the right.
Examples of digital dark field bowtie/butterfly images of an icosahedral particle. DigitalDFicotwinExamples.png
Examples of digital dark field bowtie/butterfly images of an icosahedral particle.
Dark field analysis of dual-tetrahedron crystal pairs. Fccicodf.jpg
Dark field analysis of dual-tetrahedron crystal pairs.

An icosahedral twin is a nanostructure appearing in atomic clusters and also nanoparticles with some thousands of atoms. These clusters are twenty-faced, with twenty interlinked tetrahedral crystals joined along triangular (e.g. cubic-(111)) faces having three-fold symmetry. A related, more common structure has five units similarly arranged with twinning, which were known as "fivelings" in the 19th century, [1] [2] [3] more recently as "decahedral multiply twinned particles", "pentagonal particles" or "star particles". A variety of different methods (e.g. condensing argon, metal atoms, and virus capsids) lead to the icosahedral form at size scales where surface energies are more important than those from the bulk.

Contents

Causes

When interatom bonding does not have strong directional preferences, it is not unusual for atoms to gravitate toward a kissing number of 12 nearest neighbors. The three most symmetric ways to do this are by icosahedral clustering, by crystalline face-centered-cubic (cuboctahedral) and hexagonal (tri-orthobicupolar) close packing.

Icosahedral arrangements, typically because of their smaller surface energy, [4] may be preferred for small clusters. However, the Achilles' heel for icosahedral clustering is that it cannot fill space over large distances in a way that is translationally ordered, so there is some distortion of the atomic positions, that is elastic strain. [4] De Wit pointed out that these can be thought of in terms of disclinations, [5] an approach later extended to 3D by Yoffe. [6] The shape is also not always that of a simple icosahedron, [3] and there are now several software codes that make it easy to calculate the shape. [7] [8]

At larger sizes the energy to distort becomes larger than the gain in surface energy, and bulk materials (i.e. sufficiently large clusters) generally revert to one of the crystalline close-packing configurations. In principle they will convert to a simple single crystal with a Wulff construction [9] shape. The size when they become less energetically stable is typically in the range of 10-30 nanometers in diameter, [10] but it does not always happen that the shape changes and the particles can grow to millimeter sizes.

Ubiquity

Icosahedral twinning has been seen in face-centered-cubic metal nanoparticles that have nucleated: (i) by evaporation onto surfaces, (ii) out of solution, and (iii) by reduction in a polymer matrix.

Quasicrystals are un-twinned structures with long range rotational but not translational periodicity, that some initially tried to explain away as icosahedral twinning. [11] Quasicrystals generally form only when the compositional makeup (e.g. of two dissimilar metals such as titanium and manganese) serves as an antagonist to formation of one of the more common close-packed space-filling forms.

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of the Platonic solid and of the deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

<span class="mw-page-title-main">Quasicrystal</span> Chemical structure

A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders—for instance, five-fold.

<span class="mw-page-title-main">PLATO (computational chemistry)</span>

PLATO is a suite of programs for electronic structure calculations. It receives its name from the choice of basis set used to expand the electronic wavefunctions.

<span class="mw-page-title-main">Nucleation</span> Initial step in the phase transition or molecular self-assembly of a substance

In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled below 0 °C, it will tend to freeze into ice, but volumes of water cooled only a few degrees below 0 °C often stay completely free of ice for long periods (supercooling). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice crystals appear after little or no delay.

<span class="mw-page-title-main">Crystal twinning</span> Two separate crystals sharing some of the same crystal lattice points in a symmetrical manner

Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane.

Gold clusters in cluster chemistry can be either discrete molecules or larger colloidal particles. Both types are described as nanoparticles, with diameters of less than one micrometer. A nanocluster is a collective group made up of a specific number of atoms or molecules held together by some interaction mechanism. Gold nanoclusters have potential applications in optoelectronics and catalysis.

The Reverse Monte Carlo (RMC) modelling method is a variation of the standard Metropolis–Hastings algorithm to solve an inverse problem whereby a model is adjusted until its parameters have the greatest consistency with experimental data. Inverse problems are found in many branches of science and mathematics, but this approach is probably best known for its applications in condensed matter physics and solid state chemistry.

<span class="mw-page-title-main">Volker Heine</span> New Zealand scientist

Volker Heine FRS is a New Zealand / British physicist. He is married to Daphne and they have three children. Volker Heine is considered a pioneer of theoretical and computational studies of the electronic structure of solids and liquids and the determination of physical properties derived from it.

Rydberg matter is an exotic phase of matter formed by Rydberg atoms; it was predicted around 1980 by É. A. Manykin, M. I. Ozhovan and P. P. Poluéktov. It has been formed from various elements like caesium, potassium, hydrogen and nitrogen; studies have been conducted on theoretical possibilities like sodium, beryllium, magnesium and calcium. It has been suggested to be a material that diffuse interstellar bands may arise from. Circular Rydberg states, where the outermost electron is found in a planar circular orbit, are the most long-lived, with lifetimes of up to several hours, and are the most common.

In crystallography, a disclination is a line defect in which there is compensation of an angular gap. They were first discussed by Vito Volterra in 1907, who have an analysis of the elastic strains of a wedge disclination. By analogy to dislocations in crystals, the term, disinclination, was first used by Frederick Charles Frank and since then has been modified to its current usage, disclination. They have since been analyzed in some detail particularly by Roland deWit.

The hexatic phase is a state of matter that is between the solid and the isotropic liquid phases in two dimensional systems of particles. It is characterized by two order parameters: a short-range positional and a quasi-long-range orientational (sixfold) order. More generally, a hexatic is any phase that contains sixfold orientational order, in analogy with the nematic phase.

In physics, a phason is a form of collective excitation found in aperiodic crystal structures. Phasons are a type of quasiparticle: an emergent phenomenon of many-particle systems. Similar to phonons, phasons are quasiparticles associated with atomic motion. However, whereas phonons are related to the translation of atoms, phasons are associated with atomic rearrangement. As a result of this rearrangement, or modulation, the waves that describe the position of atoms in the crystal change phase -- hence the term "phason".

The Wulff construction is a method to determine the equilibrium shape of a droplet or crystal of fixed volume inside a separate phase. Energy minimization arguments are used to show that certain crystal planes are preferred over others, giving the crystal its shape.

<span class="mw-page-title-main">Yttrium borides</span> Chemical compound

Yttrium boride refers to a crystalline material composed of different proportions of yttrium and boron, such as YB2, YB4, YB6, YB12, YB25, YB50 and YB66. They are all gray-colored, hard solids having high melting temperatures. The most common form is the yttrium hexaboride YB6. It exhibits superconductivity at relatively high temperature of 8.4 K and, similar to LaB6, is an electron cathode. Another remarkable yttrium boride is YB66. It has a large lattice constant (2.344 nm), high thermal and mechanical stability, and therefore is used as a diffraction grating for low-energy synchrotron radiation (1–2 keV).

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials.

The KTHNY-theory describes the melting of crystals in two dimensions (2D). The name is derived from the initials of the surnames of John Michael Kosterlitz, David J. Thouless, Bertrand Halperin, David R. Nelson, and A. Peter Young, who developed the theory in the 1970s. It is, beside the Ising model in 2D and the XY model in 2D, one of the few theories, which can be solved analytically and which predicts a phase transition at a temperature .

<span class="mw-page-title-main">Shape control in nanocrystal growth</span> Influences on the shape of small crystals

Shape control in nanocrystal growth is the control of the shape of nanocrystals formed in their synthesis by means of varying reaction conditions. This is a concept studied in nanosciences, which is a part of both chemistry and condensed matter physics. There are two processes involved in the growth of these nanocrystals. Firstly, volume Gibbs free energy of the system containing the nanocrystal in solution decreases as the nanocrystal size increases. Secondly, each crystal has a surface Gibbs free energy that can be minimized by adopting the shape that is energetically most favorable. Surface energies of crystal planes are related to their Miller indices, which is why these can help predict the equilibrium shape of a certain nanocrystal.

<span class="mw-page-title-main">Fiveling</span> Twinned particle found at both nanoscale and microscale

A fiveling, also known as a decahedral nanoparticle, a multiply-twinned particle (MTP), a pentagonal nanoparticle, a pentatwin, or a five-fold twin is a type of twinned crystal that can exist at sizes ranging from nanometers to millimetres. It contains five different single crystals arranged around a common axis. In most cases each unit has a face centered cubic (fcc) arrangement of the atoms, although they are also known for other types of crystal structure.

References

  1. Hofmeister, H. (1998). <3::aid-crat3>3.0.co;2-3 "Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films". Crystal Research and Technology. 33 (1): 3–25. doi:10.1002/(sici)1521-4079(1998)33:1<3::aid-crat3>3.0.co;2-3. ISSN   0232-1300.
  2. H. Hofmeister (2004) "Fivefold twinned nanoparticles" in Encyclopedia of Nanoscience and Nanotechnology (ed. H. S. Nalwa, Amer. Sci. Publ., Stevenson Ranch CA) vol. 3, pp. 431-452 ISBN   1-58883-059-4 pdf.
  3. 1 2 Marks, L D; Peng, L (2016). "Nanoparticle shape, thermodynamics and kinetics". Journal of Physics: Condensed Matter. 28 (5): 053001. doi:10.1088/0953-8984/28/5/053001. ISSN   0953-8984. PMID   26792459. S2CID   12503859.
  4. 1 2 Ino, Shozo (1969). "Stability of Multiply-Twinned Particles". Journal of the Physical Society of Japan. 27 (4): 941–953. doi:10.1143/jpsj.27.941. ISSN   0031-9015.
  5. Wit, R de (1972). "Partial disclinations". Journal of Physics C: Solid State Physics. 5 (5): 529–534. doi:10.1088/0022-3719/5/5/004. ISSN   0022-3719.
  6. Howie, A.; Marks, L. D. (1984). "Elastic strains and the energy balance for multiply twinned particles". Philosophical Magazine A. 49 (1): 95–109. doi:10.1080/01418618408233432. ISSN   0141-8610.
  7. Boukouvala, Christina; Daniel, Joshua; Ringe, Emilie (2021). "Approaches to modelling the shape of nanocrystals". Nano Convergence. 8 (1): 26. doi: 10.1186/s40580-021-00275-6 . ISSN   2196-5404. PMC   8429535 . PMID   34499259.
  8. Rahm, J.; Erhart, Paul (2020). "WulffPack: A Python package for Wulff constructions". Journal of Open Source Software. 5 (45): 1944. doi: 10.21105/joss.01944 . ISSN   2475-9066.
  9. Pimpinelli, Alberto; Villain, Jacques (1998). Physics of Crystal Growth (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511622526. ISBN   978-0-521-55198-4.
  10. Baletto, Francesca; Ferrando, Riccardo (2005). "Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects". Reviews of Modern Physics. 77 (1): 371–423. doi:10.1103/RevModPhys.77.371. ISSN   0034-6861. S2CID   54700637.
  11. Pauling, Linus (1987). "So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal". Physical Review Letters. 58 (4). American Physical Society (APS): 365–368. doi:10.1103/physrevlett.58.365. ISSN   0031-9007. PMID   10034915.