Crystallographic point group

Last updated

In crystallography, a crystallographic point group is a three dimensional point group whose symmetry operations are compatible with a three dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of crystallographic point groups to 32 (from an infinity of general point groups). These 32 groups are one-and-the-same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms.

Contents

In the classification of crystals, to each space group is associated a crystallographic point group by "forgetting" the translational components of the symmetry operations. That is, by turning screw rotations into rotations, glide reflections into reflections and moving all symmetry elements into the origin. Each crystallographic point group defines the (geometric) crystal class of the crystal.

The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect.

Notation

The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, mineralogists, and physicists.

For the correspondence of the two systems below, see crystal system .

Schoenflies notation

In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following:

Due to the crystallographic restriction theorem, n = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space.

n12346
CnC1C2C3C4C6
CnvC1v=C1hC2vC3vC4vC6v
CnhC1hC2hC3hC4hC6h
DnD1=C2D2D3D4D6
DnhD1h=C2vD2hD3hD4hD6h
DndD1d=C2hD2dD3dD4dD6d
S2nS2S4S6S8S12

D4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O and Oh constitute 32 crystallographic point groups.

Hermann–Mauguin notation

Subgroup relations of the 32 crystallographic point groups
(rows represent group orders from bottom to top as: 1,2,3,4,6,8,12,16,24, and 48.) Group-subgroup relationship (3D).png
Subgroup relations of the 32 crystallographic point groups
(rows represent group orders from bottom to top as: 1,2,3,4,6,8,12,16,24, and 48.)

An abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are

Crystal familyCrystal systemGroup names
Cubic 23m343243mm3m
Hexagonal Hexagonal666m6226mm6m26/mmm
Trigonal33323m3m
Tetragonal 444m4224mm42m4/mmm
Orthorhombic 222mm2mmm
Monoclinic 22mm
Triclinic 11

The correspondence between different notations

Crystal family Crystal system Hermann-Mauguin Shubnikov [1] Schoenflies Orbifold Coxeter Order
(full)(short)
Triclinic 11C111[ ]+1
11Ci = S2×[2+,2+]2
Monoclinic 22C222[2]+2
mmCs = C1h*[ ]2
2/mC2h2*[2,2+]4
Orthorhombic 222222D2 = V222[2,2]+4
mm2mm2C2v*22[2]4
mmmD2h = Vh*222[2,2]8
Tetragonal 44C444[4]+4
44S4[2+,4+]4
4/mC4h4*[2,4+]8
422422D4422[4,2]+8
4mm4mmC4v*44[4]8
42m42mD2d = Vd2*2[2+,4]8
4/mmmD4h*422[4,2]16
Hexagonal Trigonal33C333[3]+3
33C3i = S6[2+,6+]6
3232D3322[3,2]+6
3m3mC3v*33[3]6
33mD3d2*3[2+,6]12
Hexagonal66C666[6]+6
66C3h3*[2,3+]6
6/mC6h6*[2,6+]12
622622D6622[6,2]+12
6mm6mmC6v*66[6]12
6m26m2D3h*322[3,2]12
6/mmmD6h*622[6,2]24
Cubic 2323T332[3,3]+12
3m3Th3*2[3+,4]24
432432O432[4,3]+24
43m43mTd*332[3,3]24
3m3mOh*432[4,3]48

Isomorphisms

Many of the crystallographic point groups share the same internal structure. For example, the point groups 1, 2, and m contain different geometric symmetry operations, (inversion, rotation, and reflection, respectively) but all share the structure of the cyclic group C2. All isomorphic groups are of the same order, but not all groups of the same order are isomorphic. The point groups which are isomorphic are shown in the following table: [2]

Hermann-Mauguin Schoenflies Order Abstract group
1C11 C1
1Ci = S22 C2
2C22
mCs = C1h2
3C33 C3
4C44 C4
4S44
2/m C2h4 D2 = C2 × C2
 222D2 = V4
mm2C2v 4
3C3i = S66 C6
6C66
6C3h6
32D36 D3
3mC3v6
mmmD2h = Vh8D2 × C2
 4/mC4h8C4 × C2
422D48 D4
4mmC4v8
42mD2d = Vd8
6/mC6h12C6 × C2
23T12 A4
3mD3d12 D6
622D612
6mmC6v12
6m2D3h12
4/mmmD4h16D4 × C2
6/mmmD6h24D6 × C2
m3Th24A4 × C2
432O  24 S4
43mTd24
m3mOh48S4 × C2

This table makes use of cyclic groups (C1, C2, C3, C4, C6), dihedral groups (D2, D3, D4, D6), one of the alternating groups (A4), and one of the symmetric groups (S4). Here the symbol " × " indicates a direct product.

Deriving the crystallographic point group (crystal class) from the space group

  1. Leave out the Bravais lattice type.
  2. Convert all symmetry elements with translational components into their respective symmetry elements without translation symmetry. (Glide planes are converted into simple mirror planes; screw axes are converted into simple axes of rotation.)
  3. Axes of rotation, rotoinversion axes, and mirror planes remain unchanged.

See also

Related Research Articles

<span class="mw-page-title-main">Symmetry group</span> Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

In geometry, an improper rotation is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation. It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

<span class="mw-page-title-main">Frieze group</span> Type of symmetry group

In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats in one direction. The term is derived from architecture and decorative arts, where such repeating patterns are often used. Frieze patterns can be classified into seven types according to their symmetries. The set of symmetries of a frieze pattern is called a frieze group.

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.

<span class="mw-page-title-main">Glide reflection</span> Geometric transformation combining reflection and translation

In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation. Because the distances between points are not changed under glide reflection, it is a motion or isometry. When the context is the two-dimensional Euclidean plane, the hyperplane of reflection is a straight line called the glide line or glide axis. When the context is three-dimensional space, the hyperplane of reflection is a plane called the glide plane. The displacement vector of the translation is called the glide vector.

<span class="mw-page-title-main">Space group</span> Symmetry group of a configuration in space

In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.

<span class="mw-page-title-main">Rotational symmetry</span> Property of objects which appear unchanged after a partial rotation

Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

The Schoenfliesnotation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy. However, in crystallography, there is additional translational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the full space group is usually used instead. The naming of full space groups usually follows another common convention, the Hermann–Mauguin notation, also known as the international notation.

<span class="mw-page-title-main">Point group</span> Group of geometric symmetries with at least one fixed point

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

In geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dihn.

<span class="mw-page-title-main">Cyclic symmetry in three dimensions</span>

In three dimensional geometry, there are four infinite series of point groups in three dimensions (n≥1) with n-fold rotational or reflectional symmetry about one axis (by an angle of 360°/n) that does not change the object.

<span class="mw-page-title-main">Hermann–Mauguin notation</span> Notation to represent symmetry in point groups, plane groups and space groups

In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin. This notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935.

In crystallography, a Wyckoff position is any point in a set of points whose site symmetry groups are all conjugate subgroups one of another. Crystallography tables give the Wyckoff positions for different space groups.

In chemistry and crystallography, a symmetry element is a point, line, or plane about which symmetry operations can take place. In particular, a symmetry element can be a mirror plane, an axis of rotation, or a center of inversion. For an object such as a molecule or a crystal, a symmetry element corresponds to a set of symmetry operations, which are the rigid transformations employing the symmetry element that leave the object unchanged. The set containing these operations form one of the symmetry groups of the object. The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.

In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 13 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations. Each symmetry operation is performed with respect to some symmetry element.

<span class="mw-page-title-main">Molecular symmetry</span> Symmetry of molecules of chemical compounds

In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties, such as whether or not it has a dipole moment, as well as its allowed spectroscopic transitions. To do this it is necessary to use group theory. This involves classifying the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Symmetry is useful in the study of molecular orbitals, with applications to the Hückel method, to ligand field theory, and to the Woodward-Hoffmann rules. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry discuss symmetry. Another framework on a larger scale is the use of crystal systems to describe crystallographic symmetry in bulk materials.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

References

  1. "(International Tables) Abstract". Archived from the original on 2013-07-04. Retrieved 2011-11-25.
  2. Novak, I (1995-07-18). "Molecular isomorphism". European Journal of Physics. IOP Publishing. 16 (4): 151–153. Bibcode:1995EJPh...16..151N. doi:10.1088/0143-0807/16/4/001. ISSN   0143-0807. S2CID   250887121.