Improper rotation

Last updated

In geometry, an improper rotation [1] (also called rotation-reflection, [2] rotoreflection, [1] rotary reflection, [3] or rotoinversion [4] ) is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each a special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation. [5] It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

Contents

Example polyhedra with rotoreflection symmetry
Group S4 S6S8S10S12
SubgroupsC2C3, S2 = CiC4, C2C5, S2 = CiC6, S4, C3, C2
Example 2-antiprism rotoreflection.png
beveled digonal antiprism
3-antiprism rotoreflection.png
triangular antiprism
Rotoreflection example square antiprism.png
square antiprism
Rotoreflection example antiprism.png
pentagonal antiprism
6-antiprism rotorereflection.png
hexagonal antiprism
Antiprisms with directed edges have rotoreflection symmetry.
p-antiprisms for odd p contain inversion symmetry, Ci.

Three dimensions

In 3 dimensions, improper rotation is equivalently defined as a combination of rotation about an axis and inversion in a point on the axis. [1] For this reason it is also called a rotoinversion or rotary inversion. The two definitions are equivalent because rotation by an angle θ followed by reflection is the same transformation as rotation by θ + 180° followed by inversion (taking the point of inversion to be in the plane of reflection). In both definitions, the operations commute.

A three-dimensional symmetry that has only one fixed point is necessarily an improper rotation. [3]

An improper rotation of an object thus produces a rotation of its mirror image. The axis is called the rotation-reflection axis. [6] This is called an n-fold improper rotation if the angle of rotation, before or after reflexion, is 360°/n (where n must be even). [6] There are several different systems for naming individual improper rotations:

Subgroups

As an indirect isometry

In a wider sense, an improper rotation may be defined as any indirect isometry ; i.e., an element of E(3)\E+(3): thus it can also be a pure reflection in a plane, or have a glide plane. An indirect isometry is an affine transformation with an orthogonal matrix that has a determinant of −1.

A proper rotation is an ordinary rotation. In the wider sense, a proper rotation is defined as a direct isometry; i.e., an element of E+(3): it can also be the identity, a rotation with a translation along the axis, or a pure translation. A direct isometry is an affine transformation with an orthogonal matrix that has a determinant of 1.

In either the narrower or the wider senses, the composition of two improper rotations is a proper rotation, and the composition of an improper and a proper rotation is an improper rotation.

Physical systems

When studying the symmetry of a physical system under an improper rotation (e.g., if a system has a mirror symmetry plane), it is important to distinguish between vectors and pseudovectors (as well as scalars and pseudoscalars, and in general between tensors and pseudotensors), since the latter transform differently under proper and improper rotations (in 3 dimensions, pseudovectors are invariant under inversion).

See also

Related Research Articles

<span class="mw-page-title-main">Symmetry group</span> Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

<span class="mw-page-title-main">Reflection (mathematics)</span> Mapping from a Euclidean space to itself

In mathematics, a reflection is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis or plane of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.

<span class="mw-page-title-main">Space group</span> Symmetry group of a configuration in space

In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.

<span class="mw-page-title-main">Euclidean group</span> Isometry group of Euclidean space

In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n).

In crystallography, a crystallographic point group is a three dimensional point group whose symmetry operations are compatible with a three dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of crystallographic point groups to 32. These 32 groups are one-and-the-same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms.

<span class="mw-page-title-main">Schoenflies notation</span> Notation to represent symmetry in point groups

The Schoenfliesnotation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy. However, in crystallography, there is additional translational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the full space group is usually used instead. The naming of full space groups usually follows another common convention, the Hermann–Mauguin notation, also known as the international notation.

<span class="mw-page-title-main">Point group</span> Group of geometric symmetries with at least one fixed point

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

<span class="mw-page-title-main">Tetrahedral symmetry</span> 3D symmetry group

A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.

In geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dihn.

<span class="mw-page-title-main">Cyclic symmetry in three dimensions</span>

In three dimensional geometry, there are four infinite series of point groups in three dimensions (n≥1) with n-fold rotational or reflectional symmetry about one axis (by an angle of 360°/n) that does not change the object.

In a group, the conjugate by g of h is ghg−1.

<span class="mw-page-title-main">Hermann–Mauguin notation</span> Notation to represent symmetry in point groups, plane groups and space groups

In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin. This notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935.

In chemistry and crystallography, a symmetry element is a point, line, or plane about which symmetry operations can take place. In particular, a symmetry element can be a mirror plane, an axis of rotation, or a center of inversion. For an object such as a molecule or a crystal, a symmetry element corresponds to a set of symmetry operations, which are the rigid transformations employing the symmetry element that leave the object unchanged. The set containing these operations form one of the symmetry groups of the object. The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.

In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 13 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations. Each symmetry operation is performed with respect to some symmetry element. Symmetry operations can be classified either as point symmetry operations or as travel symmetry operations.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

<span class="mw-page-title-main">Symmetry (geometry)</span> Geometrical property

In geometry, an object has symmetry if there is an operation or transformation that maps the figure/object onto itself. Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

References

  1. 1 2 3 Morawiec, Adam (2004), Orientations and Rotations: Computations in Crystallographic Textures, Springer, p. 7, ISBN   978-3-540-40734-8 .
  2. Miessler, Gary; Fischer, Paul; Tarr, Donald (2014), Inorganic Chemistry (5 ed.), Pearson, p. 78
  3. 1 2 Kinsey, L. Christine; Moore, Teresa E. (2002), Symmetry, Shape, and Surfaces: An Introduction to Mathematics Through Geometry, Springer, p. 267, ISBN   978-1-930190-09-2 .
  4. Klein, Philpotts (2013). Earth Materials. Cambridge University Press. pp. 89–90. ISBN   978-0-521-14521-3.
  5. Salomon, David (1999), Computer Graphics and Geometric Modeling, Springer, p. 84, ISBN   978-0-387-98682-1 .
  6. 1 2 3 Bishop, David M. (1993), Group Theory and Chemistry, Courier Dover Publications, p. 13, ISBN   978-0-486-67355-4 .