Symmetry operation

Last updated

In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 13 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations. Each symmetry operation is performed with respect to some symmetry element (a point, line or plane). [1]

Contents

In the context of molecular symmetry, a symmetry operation is a permutation of atoms such that the molecule or crystal is transformed into a state indistinguishable from the starting state. Two basic facts follow from this definition, which emphasizes its usefulness.

  1. Physical properties must be invariant with respect to symmetry operations.
  2. Symmetry operations can be collected together in groups which are isomorphic to permutation groups.

In the context of molecular symmetry, quantum wavefunctions need not be invariant, because the operation can multiply them by a phase or mix states within a degenerate representation, without affecting any physical property.

Molecules

Identity Operation

The identity operation corresponds to doing nothing to the object. Because every molecule is indistinguishable from itself if nothing is done to it, every object possesses at least the identity operation. The identity operation is denoted by E or I. In the identity operation, no change can be observed for the molecule. Even the most asymmetric molecule possesses the identity operation. The need for such an identity operation arises from the mathematical requirements of group theory.

Reflection through mirror planes

Reflection operation Reflection with respect to mirror plane.jpg
Reflection operation

The reflection operation is carried out with respect to symmetry elements known as planes of symmetry or mirror planes. [2] Each such plane is denoted as σ (sigma). Its orientation relative to the principal axis of the molecule is indicated by a subscript. The plane must pass through the molecule and cannot be completely outside it.

Through the reflection of each mirror plane, the molecule must be able to produce an identical image of itself.

Inversion operation

Inversion operation is shown here with a sulfur hexafluoride molecule. All of the fluorine atoms change their position to opposite side with respect to the sulfur center Inversion operation.jpg
Inversion operation is shown here with a sulfur hexafluoride molecule. All of the fluorine atoms change their position to opposite side with respect to the sulfur center

In an inversion through a centre of symmetry, i (the element), we imagine taking each point in a molecule and then moving it out the same distance on the other side. In summary, the inversion operation projects each atom through the centre of inversion and out to the same distance on the opposite side. The inversion center is a point in space that lies in the geometric center of the molecule. As a result, all the cartesian coordinates of the atoms are inverted (i.e. x,y,z to –x,–y,–z). The symbol used to represent inversion center is i. When the inversion operation is carried out n times, it is denoted by in, where when n is even and when n is odd.

Examples of molecules that have an inversion center include certain molecules with octahedral geometry (general formula AB6), square planar geometry (general formula AB4), and ethylene (H2C=CH2). Examples of molecules without inversion centers are cyclopentadienide (C5H5) and molecules with trigonal pyramidal geometry (general formula AB3). [3]

Proper rotation operations or n-fold rotation

A proper rotation refers to simple rotation about an axis. Such operations are denoted by where Cn is a rotation of or performed m times. The superscript m is omitted if it is equal to one. C1 is a rotation through 360°, where n = 1. It is equivalent to the Identity (E) operation. C2 is a rotation of 180°, as C3 is a rotation of 120°, as and so on.

Here the molecule can be rotated into equivalent positions around an axis. An example of a molecule with C2 symmetry is the water (H2O) molecule. If the H2O molecule is rotated by 180° about an axis passing through the oxygen atom, no detectable difference before and after the C2 operation is observed.

Order n of an axis can be regarded as a number of times that, for the least rotation which gives an equivalent configuration, that rotation must be repeated to give a configuration identical to the original structure (i.e. a 360° or 2π rotation). An example of this is C3 proper rotation, which rotates by C3 represents the first rotation around the C3 axis by is the rotation by while is the rotation by is the identical configuration because it gives the original structure, and it is called an identity element (E). Therefore, C3 is an order of three, and is often referred to as a threefold axis. [3]

Improper rotation operations

An improper rotation involves two operation steps: a proper rotation followed by reflection through a plane perpendicular to the rotation axis. The improper rotation is represented by the symbol Sn where n is the order. Since the improper rotation is the combination of a proper rotation and a reflection, Sn will always exist whenever Cn and a perpendicular plane exist separately. [3] S1 is usually denoted as σ, a reflection operation about a mirror plane. S2 is usually denoted as i, an inversion operation about an inversion center. When n is an even number but when n is odd

Rotation axes, mirror planes and inversion centres are symmetry elements, not symmetry operations. The rotation axis of the highest order is known as the principal rotation axis. It is conventional to set the Cartesian z-axis of the molecule to contain the principal rotation axis.

Examples

Methylene Chloride.PNG

Dichloromethane, CH2Cl2. There is a C2 rotation axis which passes through the carbon atom and the midpoints between the two hydrogen atoms and the two chlorine atoms. Define the z axis as co-linear with the C2 axis, the xz plane as containing CH2 and the yz plane as containing CCl2. A C2 rotation operation permutes the two hydrogen atoms and the two chlorine atoms. Reflection in the yz plane permutes the hydrogen atoms while reflection in the xz plane permutes the chlorine atoms. The four symmetry operations E, C2, σ(xz) and σ(yz) form the point group C2v. Note that if any two operations are carried out in succession the result is the same as if a single operation of the group had been performed.

Methane-2D-stereo.svg

Methane, CH4. In addition to the proper rotations of order 2 and 3 there are three mutually perpendicular S4 axes which pass half-way between the C-H bonds and six mirror planes. Note that

Crystals

In crystals, screw rotations and/or glide reflections are additionally possible. These are rotations or reflections together with partial translation. These operations may change based on the dimensions of the crystal lattice.

The Bravais lattices may be considered as representing translational symmetry operations. Combinations of operations of the crystallographic point groups with the addition symmetry operations produce the 230 crystallographic space groups.

See also

Molecular symmetry

Crystal structure

Crystallographic restriction theorem

Related Research Articles

<span class="mw-page-title-main">Symmetry group</span> Group of transformations under which the object is invariant

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

<span class="mw-page-title-main">Group theory</span> Branch of mathematics that studies the properties of groups

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

In geometry, an improper rotation is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation. It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

<span class="mw-page-title-main">Euclidean group</span> Isometry group of Euclidean space

In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n).

In crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation would leave the structure of a crystal unchanged i.e. the same kinds of atoms would be placed in similar positions as before the transformation. For example, in many crystals in the cubic crystal system, a rotation of the unit cell by 90 degrees around an axis that is perpendicular to one of the faces of the cube is a symmetry operation that moves each atom to the location of another atom of the same kind, leaving the overall structure of the crystal unaffected.

<span class="mw-page-title-main">Rotational symmetry</span> Property of objects which appear unchanged after a partial rotation

Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

The Schoenfliesnotation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy. However, in crystallography, there is additional translational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the full space group is usually used instead. The naming of full space groups usually follows another common convention, the Hermann–Mauguin notation, also known as the international notation.

<span class="mw-page-title-main">Miller index</span> Description of crystal lattice planes

Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices.

<span class="mw-page-title-main">Dihedral group of order 6</span> Non-commutative group with 6 elements

In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S3. It is also the smallest non-abelian group.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

<span class="mw-page-title-main">Hermann–Mauguin notation</span> Notation to represent symmetry in point groups, plane groups and space groups

In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin. This notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935.

In chemistry and crystallography, a symmetry element is a point, line, or plane about which symmetry operations can take place. In particular, a symmetry element can be a mirror plane, an axis of rotation, or a center of inversion. For an object such as a molecule or a crystal, a symmetry element corresponds to a set of symmetry operations, which are the rigid transformations employing the symmetry element that leave the object unchanged. The set containing these operations form one of the symmetry groups of the object. The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.

<span class="mw-page-title-main">Molecular symmetry</span> Symmetry of molecules of chemical compounds

In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties, such as whether or not it has a dipole moment, as well as its allowed spectroscopic transitions. To do this it is necessary to use group theory. This involves classifying the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Symmetry is useful in the study of molecular orbitals, with applications to the Hückel method, to ligand field theory, and to the Woodward-Hoffmann rules. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry discuss symmetry. Another framework on a larger scale is the use of crystal systems to describe crystallographic symmetry in bulk materials.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.

Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed spectroscopic transitions, without doing the exact rigorous calculations. To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Among all the molecular symmetries, diatomic molecules show some distinct features and they are relatively easier to analyze.

References

F. A. Cotton Chemical applications of group theory, Wiley, 1962, 1971

  1. Atkins, Peter (2006). ATKINS' PHYSICAL CHEMISTRY. Great Britain Oxford University Press: W.H. Freeman and Company. p. 404. ISBN   0-7167-8759-8.
  2. "Symmetry elements and operations" (PDF).
  3. 1 2 3 Cotton, Albert (1990). Chemical Applications of Group Theory. United States: Wiley-Interscience. p. 23.