Screw axis

Last updated
A helix on a screw axis Pure screw.svg
A helix on a screw axis

A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis. [1] [2]

Contents

Plücker coordinates are used to locate a screw axis in space, and consist of a pair of three-dimensional vectors. The first vector identifies the direction of the axis, and the second locates its position. The special case when the first vector is zero is interpreted as a pure translation in the direction of the second vector. A screw axis is associated with each pair of vectors in the algebra of screws, also known as screw theory. [3]

The spatial movement of a body can be represented by a continuous set of displacements. Because each of these displacements has a screw axis, the movement has an associated ruled surface known as a screw surface. This surface is not the same as the axode, which is traced by the instantaneous screw axes of the movement of a body. The instantaneous screw axis, or 'instantaneous helical axis' (IHA), is the axis of the helicoidal field generated by the velocities of every point in a moving body.

When a spatial displacement specializes to a planar displacement, the screw axis becomes the displacement pole, and the instantaneous screw axis becomes the velocity pole, or instantaneous center of rotation, also called an instant center. The term centro is also used for a velocity pole, and the locus of these points for a planar movement is called a centrode. [4]

History

The proof that a spatial displacement can be decomposed into a rotation around, and translation along, a line in space is attributed to Michel Chasles in 1830. [5] Recently the work of Giulio Mozzi has been identified as presenting a similar result in 1763. [6] [7]

Screw axis symmetry

The Boerdijk-Coxeter helix is an example of a screw axis symmetry that is nonperiodic. Coxeter helix.png
The Boerdijk–Coxeter helix is an example of a screw axis symmetry that is nonperiodic.

A screw displacement (also screw operation or rotary translation) is the composition of a rotation by an angle φ about an axis (called the screw axis) with a translation by a distance d along this axis. A positive rotation direction usually means one that corresponds to the translation direction by the right-hand rule. This means that if the rotation is clockwise, the displacement is away from the viewer. Except for φ = 180°, we have to distinguish a screw displacement from its mirror image. Unlike for rotations, a righthand and lefthand screw operation generate different groups.

The combination of a rotation about an axis and a translation in a direction perpendicular to that axis is a rotation about a parallel axis. However, a screw operation with a nonzero translation vector along the axis cannot be reduced like that. Thus the effect of a rotation combined with any translation is a screw operation in the general sense, with as special cases a pure translation, a pure rotation and the identity. Together these are all the direct isometries in 3D.

31 screw axis in crystal structure of tellurium Te chains.png
31 screw axis in crystal structure of tellurium

In crystallography, a screw axis symmetry is a combination of rotation about an axis and a translation parallel to that axis which leaves a crystal unchanged. If φ = 360°/n for some positive integer n, then screw axis symmetry implies translational symmetry with a translation vector which is n times that of the screw displacement.

Applicable for space groups is a rotation by 360°/n about an axis, combined with a translation along the axis by a multiple of the distance of the translational symmetry, divided by n. This multiple is indicated by a subscript. So, 63 is a rotation of 60° combined with a translation of 1/2 of the lattice vector, implying that there is also 3-fold rotational symmetry about this axis. The possibilities are 21, 31, 41, 42, 61, 62, and 63, and the enantiomorphous 32, 43, 64, and 65. [8] Considering a screw axis nm, if g is the greatest common divisor of n and m, then there is also a g-fold rotation axis. When n/g screw operations have been performed, the displacement will be m/g, which since it is a whole number means one has moved to an equivalent point in the lattice, while carrying out a rotation by 360°/g. So 42, 62 and 64 create two-fold rotation axes, while 63 creates a three-fold axis.

A non-discrete screw axis isometry group contains all combinations of a rotation about some axis and a proportional translation along the axis (in rifling, the constant of proportionality is called the twist rate); in general this is combined with k-fold rotational isometries about the same axis (k ≥ 1); the set of images of a point under the isometries is a k-fold helix; in addition there may be a 2-fold rotation about a perpendicularly intersecting axis, and hence a k-fold helix of such axes.

Screw axis of a spatial displacement

Geometric argument

Let D : R3R3 be an orientation-preserving rigid motion of R3. The set of these transformations is a subgroup of Euclidean motions known as the special Euclidean group SE(3). These rigid motions are defined by transformations of x in R3 given by

consisting of a three-dimensional rotation A followed by a translation by the vector d.

A three-dimensional rotation A has a unique axis that defines a line L. Let the unit vector along this line be S so that the translation vector d can be resolved into a sum of two vectors, one parallel and one perpendicular to the axis L, that is,

In this case, the rigid motion takes the form

Now, the orientation preserving rigid motion D* = A(x) + d transforms all the points of R3 so that they remain in planes perpendicular to L. For a rigid motion of this type there is a unique point c in the plane P perpendicular to L through 0, such that

The point C can be calculated as

because d does not have a component in the direction of the axis of A.

A rigid motion D* with a fixed point must be a rotation of around the axis Lc through the point c. Therefore, the rigid motion

consists of a rotation about the line Lc followed by a translation by the vector dL in the direction of the line Lc.

Conclusion: every rigid motion of R3 is the result of a rotation of R3 about a line Lc followed by a translation in the direction of the line. The combination of a rotation about a line and translation along the line is called a screw motion.

Computing a point on the screw axis

A point C on the screw axis satisfies the equation: [9]

Solve this equation for C using Cayley's formula for a rotation matrix

where [B] is the skew-symmetric matrix constructed from Rodrigues' vector

such that

Use this form of the rotation A to obtain

which becomes

This equation can be solved for C on the screw axis P(t) to obtain,

The screw axis P(t) = C + tS of this spatial displacement has the Plücker coordinates S = (S, C × S). [9]

Dual quaternion

The screw axis appears in the dual quaternion formulation of a spatial displacement D = ([A], d). The dual quaternion is constructed from the dual vector S = (S, V) defining the screw axis and the dual angle (φ, d), where φ is the rotation about and d the slide along this axis, which defines the displacement D to obtain,

A spatial displacement of points q represented as a vector quaternion can be defined using quaternions as the mapping

where d is translation vector quaternion and S is a unit quaternion, also called a versor, given by

that defines a rotation by 2θ around an axis S.

In the proper Euclidean group E+(3) a rotation may be conjugated with a translation to move it to a parallel rotation axis. Such a conjugation, using quaternion homographies, produces the appropriate screw axis to express the given spatial displacement as a screw displacement, in accord with Chasles’ theorem.

Mechanics

The instantaneous motion of a rigid body may be the combination of rotation about an axis (the screw axis) and a translation along that axis. This screw move is characterized by the velocity vector for the translation and the angular velocity vector in the same or opposite direction. If these two vectors are constant and along one of the principal axes of the body, no external forces are needed for this motion (moving and spinning). As an example, if gravity and drag are ignored, this is the motion of a bullet fired from a rifled gun.

Biomechanics

This parameter is often used in biomechanics, when describing the motion of joints of the body. For any period of time, joint motion can be seen as the movement of a single point on one articulating surface with respect to the adjacent surface (usually distal with respect to proximal). The total translation and rotations along the path of motion can be defined as the time integrals of the instantaneous translation and rotation velocities at the IHA for a given reference time. [10]

In any single plane, the path formed by the locations of the moving instantaneous axis of rotation (IAR) is known as the 'centroid', and is used in the description of joint motion.

See also

Related Research Articles

Angular momentum Physical quantity

In physics, angular momentum is the rotational analog of linear momentum. It is an important quantity in physics because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

Equations of motion Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

Angular displacement

Angular displacement of a body is the angle through which a point revolves around a centre or a specified axis in a specified sense. When a body rotates about its axis, the motion cannot simply be analyzed as a particle, as in circular motion it undergoes a changing velocity and acceleration at any time (t). When dealing with the rotation of a body, it becomes simpler to consider the body itself rigid. A body is generally considered rigid when the separations between all the particles remains constant throughout the body's motion, so for example parts of its mass are not flying off. In a realistic sense, all things can be deformable, however this impact is minimal and negligible. Thus the rotation of a rigid body over a fixed axis is referred to as rotational motion.

In physics, angular velocity or rotational velocity, also known as angular frequency vector, is a pseudovector representation of how fast the angular position or orientation of an object changes with time. The magnitude of the pseudovector represents the angular speed, the rate at which the object rotates or revolves, and its direction is normal to the instantaneous plane of rotation or angular displacement. The orientation of angular velocity is conventionally specified by the right-hand rule.

Unit vector Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

Rotation (mathematics) Motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have sign : a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

Rigid body Physical object which does not deform when forces or moments are exerted on it

In physics, a rigid body is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.

Rigid body dynamics

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

Eulers rotation theorem Movement with a fixed point is rotation

In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group.

Screw theory Mathematical formulation of vector pairs used in physics (rigid body dynamics)

Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms.

Rotation around a fixed axis Type of motion

Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will appear.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

Dual quaternion

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

Linear motion, also called rectilinear motion, is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion with constant velocity or zero acceleration; and non-uniform linear motion with variable velocity or non-zero acceleration. The motion of a particle along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running 100m along a straight track.

In mathematics, a rigid transformation is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points.

Symmetry in quantum mechanics Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

Chasles theorem (kinematics) Rigid body displacements reduce to a translation and a rotation about a parallel axis

In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a translation along a line followed by a rotation about an axis parallel to that line.

References

  1. Bottema, O, and B. Roth, Theoretical Kinematics, Dover Publications (September 1990), link to Google books
  2. Hunt, K. H., Kinematic Geometry of Mechanism, Oxford University Press, 1990
  3. R.S. Ball, A Treatise on the Theory of Screws, Hodges, Dublin, 1876, Appendix 1, University Press, Cambridge, 1900, p. 510
  4. Homer D. Eckhardt, Kinematic Design of Machines and Mechanisms, McGraw-Hill (1998) p. 63 ISBN   0-07-018953-6 on-line at Google books
  5. M. Chasles, Note sur les Proprietes Generales du Systeme de Deux Corps Semblables entr'eux, Bullettin de Sciences Mathematiques, Astronomiques Physiques et Chimiques, Baron de Ferussac, Paris, 1830, pp. 321±326
  6. G. Mozzi, Discorso matematico sopra il rotamento momentaneo dei corpi, Stamperia di Donato Campo, Napoli, 1763
  7. M. Ceccarelli, Screw axis defined by Giulio Mozzi in 1763 and early studies on helicoidal motion, Mechanism and Machine Theory 35 (2000) 761-770
  8. Walter Borchardt-Ott (1995). Crystallography. Springer-Verlag. ISBN   3-540-59478-7.
  9. 1 2 J. M. McCarthy and G. S. Soh, Geometric Design of Linkages, 2nd Edition, Springer 2010
  10. Woltring HJ, de Lange A, Kauer JMG, Huiskes R. 1987 Instantaneous helical axes estimation via natural, cross-validated splines. In: Bergmann G, Kölbel R, Rohlmann A (Editors). Biomechanics: Basic and Applied Research. Springer, pp 121-128. full text