Kink (materials science)

Last updated

Kinks are deviations of a dislocation defect along its glide plane. In edge dislocations, the constant glide plane allows short regions of the dislocation to turn, converting into screw dislocations and producing kinks. Screw dislocations have rotatable glide planes, thus kinks that are generated along screw dislocations act as an anchor for the glide plane. [1] [2] Kinks differ from jogs in that kinks are strictly parallel to the glide plane, while jogs shift away from the glide plane.

Contents

Energy

Pure-edge and screw dislocations are conceptually straight in order to minimize its length, and through it, the strain energy of the system. Low-angle mixed dislocations, on the other hand, can be thought of as primarily edge dislocation with screw kinks in a stair-case structure (or vice versa), switching between straight pure-edge and pure-screw dislocation segments. In reality, kinks are not sharp transitions. Both the total length of the dislocation and the kink angle are dependent on the free energy of the system. The primary dislocation regions lie in Peierls-Nabarro potential minima, while the kink requires addition energy in the form of an energy peak. To minimize free energy, the kink equilibrates at a certain length and angle. Large energy peaks create short but sharp kinks in order to minimize dislocation length within the high energy region, while small energy peaks create long and drawn-out kinks in order to minimize total dislocation length. [3]

The shape of the kink changes depending on the energy peak. On the top, a large energy peak creates a sharp kink transition. On the bottom, a smaller energy peak creates a wider and more gradual transition. Kink shape.png
The shape of the kink changes depending on the energy peak. On the top, a large energy peak creates a sharp kink transition. On the bottom, a smaller energy peak creates a wider and more gradual transition.

Kink movement

Kinks facilitate the movement of dislocations along its glide plane under shear stress, and is directly responsible for plastic deformation of crystals. When a crystal undergoes shear force, e.g. cut with scissors, the applied shear force causes dislocations to move through the material, displacing atoms and deforming the material. The entire dislocation does not move at once – rather, the dislocation produces a pair of kinks, which then propagates in opposite directions down the length of the dislocation, eventually shifting the entire dislocation by a Burgers vector. The velocity of dislocations through kink propagation also clearly limited on the nucleation frequency of kinks, as a lack of kinks compromises the mechanism by which dislocations move.

As shear force approaches infinity, the velocity at which dislocations migrate is limited by the physical properties of the material, maximizing at the material's sound velocity. At lower shear stresses, the velocity of dislocations end up relating exponentially with the applied shear force:

where

is applied shear force
and are experimentally found constants

The above equation gives the upper limit on dislocation velocity. The interactions of dislocation movement on its environment, particularly other defects such as jogs and precipitates, results in drag and slows down the dislocation: [4]

where

is the drag parameter of the crystal

Kink movement is strongly dependent on temperature as well. Higher thermal energy assists in the generation of kinks, as well as increasing atomic vibrations and promoting dislocation motion.

Kinks may also form under compressive stress due to the buckling of crystal planes into a cavity. At high compressive forces, masses of dislocations move at once. Kinks align with each other, forming walls of kinks that propagate all at once. [5] At sufficient forces, the tensile force produced by the dislocation core exceeds the fracture stress of the material, combining kink boundaries into sharp kinks and de-laminating the basal planes of the crystal.

Related Research Articles

<span class="mw-page-title-main">Plasticity (physics)</span> Non-reversible deformation of a solid material in response to applied forces

In physics and materials science, plasticity is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding.

<span class="mw-page-title-main">Shear stress</span> Component of stress coplanar with a material cross section

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

<span class="mw-page-title-main">Creep (deformation)</span> Tendency of a solid material to move slowly or deform permanently under mechanical stress

In materials science, creep is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increase as they near their melting point.

<span class="mw-page-title-main">Dislocation</span> Linear crystallographic defect or irregularity

In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation. A dislocation defines the boundary between slipped and unslipped regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and arrangement of dislocations influences many of the properties of materials.

<span class="mw-page-title-main">Mohr's circle</span> Geometric civil engineering calculation technique

Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.

Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel. In superalloys, it is known to cause yield strength anomaly providing excellent high-temperature strength.

<span class="mw-page-title-main">Yield (engineering)</span> Phenomenon of deformation due to structural stress

In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.

<span class="mw-page-title-main">Critical resolved shear stress</span> Component of shear stress necessary to initiate slip in a crystal

In materials science, critical resolved shear stress (CRSS) is the component of shear stress, resolved in the direction of slip, necessary to initiate slip in a grain. Resolved shear stress (RSS) is the shear component of an applied tensile or compressive stress resolved along a slip plane that is other than perpendicular or parallel to the stress axis. The RSS is related to the applied stress by a geometrical factor, m, typically the Schmid factor:

<span class="mw-page-title-main">Slip (materials science)</span> Displacement between parts of a crystal along a crystallographic plane

In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. Slip occurs by the passage of dislocations on close/packed planes, which are planes containing the greatest number of atoms per area and in close-packed directions. Close-packed planes are known as slip or glide planes. A slip system describes the set of symmetrically identical slip planes and associated family of slip directions for which dislocation motion can easily occur and lead to plastic deformation. The magnitude and direction of slip are represented by the Burgers vector, b.

<span class="mw-page-title-main">Sediment transport</span> Movement of solid particles, typically by gravity and fluid entrainment

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

In metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element to the crystalline lattice of another element, forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms.

In geology, a deformation mechanism is a process occurring at a microscopic scale that is responsible for changes in a material's internal structure, shape and volume. The process involves planar discontinuity and/or displacement of atoms from their original position within a crystal lattice structure. These small changes are preserved in various microstructures of materials such as rocks, metals and plastics, and can be studied in depth using optical or digital microscopy.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

<span class="mw-page-title-main">Frank–Read source</span> Model for the generation of specific dislocations in crystals under deformation

In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, dislocations must be generated in the material. This implies that, during deformation, dislocations must be primarily generated in these planes. Cold working of metal increases the number of dislocations by the Frank–Read mechanism. Higher dislocation density increases yield strength and causes work hardening of metals.

<span class="mw-page-title-main">Mechanical properties of carbon nanotubes</span>

The mechanical properties of carbon nanotubes reveal them as one of the strongest materials in nature. Carbon nanotubes (CNTs) are long hollow cylinders of graphene. Although graphene sheets have 2D symmetry, carbon nanotubes by geometry have different properties in axial and radial directions. It has been shown that CNTs are very strong in the axial direction. Young's modulus on the order of 270 - 950 GPa and tensile strength of 11 - 63 GPa were obtained.

Dislocation creep is a deformation mechanism in crystalline materials. Dislocation creep involves the movement of dislocations through the crystal lattice of the material, in contrast to diffusion creep, in which diffusion is the dominant creep mechanism. It causes plastic deformation of the individual crystals, and thus the material itself.

An antiphase domain (APD) is a type of planar crystallographic defect in which the atoms within a region of a crystal are configured in the opposite order to those in the perfect lattice system. Throughout the entire APD, atoms sit on the sites typically occupied by atoms of a different species. For example, in an ordered AB alloy, if an A atom occupies the site usually occupied by a B atom, a type of crystallographic point defect called an antisite defect is formed. If an entire region of the crystal is translated such that every atom in a region of the plane of atoms sits on its antisite, an antiphase domain is formed. In other words, an APD is a region formed from antisite defects of a parent lattice. On either side of this domain, the lattice is still perfect, and the boundaries of the domain are referred to as antiphase boundaries. Crucially, crystals on either side of an antiphase boundary are related by a translation, rather than a reflection or an inversion.

In materials science, Schmid's law describes the slip plane and the slip direction of a stressed material, which can resolve the most shear stress.

<span class="mw-page-title-main">Cross slip</span> Movement of a screw dislocation between crystallographic planes

In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of screw dislocations. Non-planar movement of edge dislocations is achieved through climb.

References

  1. H. Föll. "Movement and Generation of Dislocations – Kinks and Jogs". University of Kiel.
  2. Bulatov, V. V.; Justo, J. F.; Cai, W.; Yip, S.; Argon, A. S.; Lenosky, T.; de Koning, M.; de Rubia, T. D. (2001). "Parameter-free modelling of dislocation motion: the case of silicon". Philos. Mag. 81: 1257. doi:10.1080/01418610108214440.
  3. Courtney, T. (2005). Mechanical Behaviour of Materials (2nd ed.). Waveland Press.
  4. Gilman, J. J. (1965). "Dislocation Mobility in Crystals." Journal of Applied Physics, 36(10): 3195-3206.
  5. Barsoum, M. W., L. Farber, T. J. M. El-Raghy and M. T. A (1999). "Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2." J Am Chem Soc, 30(7): 1727–1738.