Slip bands or stretcher-strain marks are localized bands of plastic deformation in metals experiencing stresses. Formation of slip bands indicates a concentrated unidirectional slip on certain planes causing a stress concentration. Typically, slip bands induce surface steps (e.g., roughness due persistent slip bands during fatigue) and a stress concentration which can be a crack nucleation site. Slip bands extend until impinged by a boundary, and the generated stress from dislocations pile-up against that boundary will either stop or transmit the operating slip depending on its (mis)orientation. [3] [4]
Formation of slip bands under cyclic conditions is addressed as persistent slip bands (PSBs) where formation under monotonic condition is addressed as dislocation planar arrays (or simply slip-bands, see Slip bands in the absence of cyclic loading section). [5] Slip-bands can be simply viewed as boundary sliding due to dislocation glide that lacks (the complexity of ) PSBs high plastic deformation localisation manifested by tongue- and ribbon-like extrusion. And, where PSBs normally studied with (effective) Burgers vector aligned with the extrusion plane because a PSB extends across the grain and exacerbates during fatigue; [6] a monotonic slip-band has a Burger’s vector for propagation and another for plane extrusions both controlled by the conditions at the tip.
This section may be confusing or unclear to readers.(March 2023) |
Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8] ) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure. PSB – ladder structure – is formed mainly from low-density channels of mobile gliding screw dislocation segments and high-density walls of dipolar edge dislocation segments piled up with tangled bowing-out edge segment and different sizes of dipolar loops scattered between the walls and channels. [9] [10]
One type of dislocation loop forms the boundary of a completely enclosed patch of slipped material on the slip plane which terminates at the free surface. Widening of the slip band: Screw dislocation can have high enough resolved shear stress for a glide on more than one slip plane. Cross-slip can occur. But this leaves some segments of dislocation on the original slip plane. Dislocation can cross-slip back on to a parallel primary slip plane. where it forms a new dislocation source, and the process can repeat. These walls in PSBs are a ‘dipole dispersion’ form of stable arrangement of edge dislocations with minimal long-range stress field which has a minimal long-range stress field.[ clarification needed ] This is different to slip-bands that is a planar stack of a stable array that has a strong long-range stress field.[ clarification needed ] Thus, – in the free surface – cut and open (elimination) of dislocation loops at the surface cause the irreversible/persistent surface step associated with slip-bands. [10] [11] [12]
Surface relief through extrusion occurs on the Burger's vector direction and extrusion height and PSB depth increase with PSB thickness. [13] PSB and planar walls are parallel and perpendicularly aligned with the normal direction of the Critical resolved shear stress, respectively. [14] And once dislocation saturate and reach its sessile configuration, cracks were observed to nucleate and propagate along PSB extrusions. [15] [16] [17] To summarise, contrary to 2D line defects, the field at the slip-band tip is due to three-dimensional interactions where the slip band extrusion simulates a sink-like dislocation blooming along the slip band axis. The magnitude of the gradient deformation field ahead of the slip band depends on the slip height and the mechanical conditions for propagation is influenced by the emitted dislocations long range field.A surface marking, or slip band, appears at the intersection of an active slip plane and the free surface of a crystal. Slip occurs in avalanches separated in time. Avalanches from other slip systems crossing a slip plane containing an active source led to the observed stepped surface markings, with successive avalanches from the given source displaced relative to each other. [18]
Dislocations are generated on a single slip plane They point out that a dislocation segment (Frank–Read source), lying in a slip plane and pinned at both ends, is a source of an unlimited number of dislocation loops. In this way the grouping of dislocations into an avalanche of a thousand or so loops on a single slip plane can be understood. [19] Each dislocation loop has a stress field that opposes the applied stress in the neighbourhood of the source. When enough loops have been generated, the stress at the source will fall to a value so low that additional loops cannot form. Only after the original avalanche of loops has moved some distance away can another avalanche occur.
Generation of the first avalanche at a source is easily understood. When the stress at the source reaches r*, loops are generated, and continue to be generated until the back-stress stops the avalanche. A second avalanche will not occur immediately in polycrystals, for the loops in the first avalanche are stopped or partially stopped at grain boundaries. Only if the external stress is increased substantially will a second avalanche be formed. In this way the formation of additional avalanches with rising stress can be understood.
It remains to explain the displacement of successive avalanches by a small amount normal to the slip plane, thereby accounting for the observed fine structure of slip bands. A displacement of this type requires that a Frank–Read source move relative to the surface where slip bands are observed.
In situ nano-compression work [20] in Transmission electron microscopy (TEM) reveals that the deformation of a-Fe at the nanoscale is an inhomogeneous process characterized by a series of short displacement bursts and intermittent large displacement bursts. The series of short bursts correspond to the collective movement of dislocations within the crystal. The large single bursts are from SBs nucleated from the specimen surface. These results suggest that the formation of SBs can be considered as a source-limited plasticity process. The initial plastic deformation is characterized by the multiplication/ movement of a few dislocations over short distances due to the availability of dislocation sources within the nano-blade. Once it has reached a stage at which the mobile dislocations along preferred slips planes have moved through the nano-blade or become entangled in sessile configurations and further dislocation movement is difficult within the crystal, plasticity is carried out by the formation of SBs, which nucleate from the surface [21] and then propagate through the nano-blade.
Fisher et al. [18] proposed that SBs are dynamically generated from a Frank–Read source at the specimen surface and are terminated by their own stress field in single crystals. The displacement burst behaviour reported by Kiener and Minor [22] on compressing Cu single crystal nanopillars. Obviously suppressed the progress of serrated yielding (a series of short strain bursts) relative to that without the spinodal nanostructure. The results revealed that during compression deformation, the spinodal nanostructure confined the movement of dislocations (leading to a significant increase in dislocation density), causing a notable strengthening effect, and also kept the slip band morphology planar. [23]
Dislocation activity assists the growth of austenite precipitates and provide quantitative data for revealing the stress field generated by interface migration. [24] The jerky nature of the tip moving rate is probably due to the accumulation and relaxation of stress field near the tip. After leaving from the tip, the dislocation loop expands rapidly ahead of the tip thus the change in tip velocity is concomitant with dislocation emission. It indicates that the emitted dislocation is strongly repelled by the stress field present at the lath tip. When the loop meets the foil surface, it breaks into two dislocation segments that leave a visible trace, due to the presence of a thin oxide layer on the surface. The emission of a dislocation loop from the tip may also affect tip moving rate via interaction between the local dislocation loop and the possible interfacial dislocations in the semi-coherent interface surrounding the tip. consequently, the tip halted temporarily. The net shear stress acting on each dislocation results from a combination of the stress field at the lath tip (τtip), the image stress tending to attract the dislocation loop to the surface (τimage), the line tension (τl) and the interaction stress between dislocations (τinter). This implies the strain field due to the transformation of austenite is large enough to cause the nucleation and emission of dislocations from an austenite lath tip. [2]
While repeatedly reversed loading commonly leads to localisation of dislocation glide, creating linear extrusions and intrusions on a free surface, similar features can arise even if there is no load reversal. These arise from dislocations gliding on a particular slip plane, in a particular slip direction (within a single grain), under an external load. Steps can be created on the free surface as a consequence of the tendency for dislocations to follow one another along a glide path, of which there may be several in parallel with each other in the grain concerned. Prior passage of dislocations apparently makes glide easier for subsequent ones, and the effect may also be associated with dislocation sources, such as a Frank-Read source, acting in particular planes.
The appearance of such bands, which are sometimes termed “persistent slip lines”, is similar to that of those arising from cyclic loading, but the resultant steps are usually more localised and have lower heights. They also reveal the grain structure. They can often be seen on free surfaces that were polished before the deformation took place. For example, the figure shows micrographs [25] (taken with different magnifications) of the region around an indent created in a copper sample with a spherical indenter. The parallel lines within individual grains are each the result of several hundred dislocations of the same type reaching the free surface, creating steps with a height of the order of a few microns. If a single slip system was operational within a grain, then there is just one set of lines, but it is common for more than one system to be activated within a grain (particularly when the strain is relatively high), leading to two or more sets of parallel lines. Other features indicative of the details of how the plastic deformation took place, such as a region of cooperative shear caused by deformation twinning, can also sometimes be seen on such surfaces. In the optical micrograph shown, there is also evidence of grain rotations – for example, at the “rim” of the indent and in the form of depressions at grain boundaries. Such images can thus be very informative.
The deformation field at the slip-band is due to three-dimensional elastic and plastic strains where the concentrated shear of the slip band tip deforms the grain in its vicinity. The elastic strains describe the stress concentration ahead of the slip band, which is important as it can affect the transfer of plastic deformation across grain boundaries. [27] [28] [29] An understanding of this is needed to support the study of yield and inter/intra-granular fracture. [30] [31] [32] The concentrated shear of slip bands can also nucleate cracks in the plane of the slip band, [16] [17] and persistent slip bands that lead to intragranular fatigue crack initiation and growth may also form under cyclic loading conditions. [5] [33] To properly characterise slip bands and validate mechanistic models for their interactions with microstructure, it is crucial to quantify the local deformation fields associated with their propagation. However, little attention has been given to slip bands within grains (i.e., in the absence of grain boundary interaction).
The long-range stress field (i.e., the elastic strain field) around the tip of a stress concentrator, such as a slip band, can be considered a singularity equivalent to that of a crack. [34] [35] This singularity can be quantified using a path independent integral since it satisfies the conservation laws of elasticity. The conservation laws of elasticity related to translational, rotational, and scaling symmetries were derived initially by Knowles and Sternberg [36] from the Noether's theorem. [37] Budiansky and Rice [38] introduced the J-, M-, L-integral and were the first to give them a physical interpretation as the strain energy-release rates for mechanisms such as cavity propagation, simultaneous uniform expansion, and defect rotation, respectively. When evaluated over a surface that encloses a defect, these conservation integrals represent a configurational force on the defect. [39] That work paved the way for the field of Configurational mechanics of materials, with the path-independent J-integral now widely used to analyse the configurational forces in problems as diverse as dislocation dynamics, [40] [41] misfitting inclusions, [42] propagation of cracks, [43] shear deformation of clays, [44] and co-planar dislocation nucleation from shear loaded cracks. [45] The integrals have been applied to linear elastic and elastic-plastic materials and have been coupled with processes such as thermal [46] and electrochemical [47] loading, and internal tractions. [48] Recently, experimental fracture mechanics studies have used full-field in situ measurements of displacements [49] [50] and elastic strains [51] [50] to evaluate the local deformation field surrounding the crack tip as a J-integral.
Slip bands form due to plastic deformation, and the analysis of the force on a dislocation considers the two-dimensional nature of the dislocation line defect. General definitions of the Peach–Koehler configurational force (𝑃𝑘𝑗) [52] (or the elastic energy-momentum tensor [53] ) on a dislocation in the arbitrary 𝑥1, 𝑥2, 𝑥3 coordinate system, decompose the Burgers vector (𝑏) to orthogonal components. This leads to the generalised definition of the J-integral in equations below. For a dislocation pile-up, the J-integral is the summation of the Peach–Koehler configurational force of the dislocations in the pile-up (including out-of-plane, 𝑏3 [54] ).
𝐽𝑘 = ∫ 𝑃𝑘𝑗 𝑛𝑗 𝑑𝑆 = ∫(𝑊𝑠 𝑛𝑘− 𝑇𝑖 𝑢𝑖,𝑘) 𝑑𝑆
𝐽𝑘𝑥 = 𝑅𝑘𝑗 𝐽𝑗, 𝑖,𝑗,𝑘=1,2,3
where 𝑆 is an arbitrary contour around the dislocation pile-up with unit outward normal 𝑛𝑖, 𝑊𝑠 is the strain energy density, 𝑇𝑖 = 𝜎𝑖𝑗 𝑛𝑗 is the traction on 𝑑𝑆, 𝑢𝑖 are the displacement vector components, 𝐽𝑘𝑥 is 𝐽-integral evaluated along the 𝑥𝑘 direction, and 𝑅𝑘𝑗 is a second-order mapping tensor that maps 𝐽𝑘 into 𝑥𝑘 direction. This vectorial 𝐽𝑘-integral leads to numerical difficulties in the analysis since 𝐽2 and, for a three-dimensional slip band or inclined crack, the 𝐽3 terms cannot be neglected. [1]
Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversible upon removing the stress. Ductility is a critical mechanical performance indicator, particularly in applications that require materials to bend, stretch, or deform in other ways without breaking. The extent of ductility can be quantitatively assessed using the percent elongation at break, given by the equation:
In physics and materials science, plasticity is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding.
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.
In materials science, creep is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increases as they near their melting point.
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation. A dislocation defines the boundary between slipped and unslipped regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and arrangement of dislocations influences many of the properties of materials.
Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In the microscope an incident beam of electrons hits a tilted sample. As backscattered electrons leave the sample, they interact with the atoms and are both elastically diffracted and lose energy, leaving the sample at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). The EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. They can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is used for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery.
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane.
Lüders bands are a type of slip band or stretcher-strain mark which are formed due to localized bands of plastic deformation in metals experiencing tensile stresses, common to low-carbon steels and certain Al-Mg alloys. First reported by Guillaume Piobert, and later by W. Lüders, the mechanism that stimulates their appearance is known as dynamic strain aging, or the inhibition of dislocation motion by interstitial atoms, around which "atmospheres" or "zones" naturally congregate.
The Bauschinger effect refers to a property of materials where the material's stress/strain characteristics change as a result of the microscopic stress distribution of the material. For example, an increase in tensile yield strength occurs at the expense of compressive yield strength. The effect is named after German engineer Johann Bauschinger.
Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the main uses of zirconium alloys is in nuclear technology, as cladding of fuel rods in nuclear reactors, especially water reactors. A typical composition of nuclear-grade zirconium alloys is more than 95 weight percent zirconium and less than 2% of tin, niobium, iron, chromium, nickel and other metals, which are added to improve mechanical properties and corrosion resistance.
In materials science, hardness is a measure of the resistance to localized plastic deformation, such as an indentation or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.
In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. Slip occurs by the passage of dislocations on close/packed planes, which are planes containing the greatest number of atoms per area and in close-packed directions. Close-packed planes are known as slip or glide planes. A slip system describes the set of symmetrically identical slip planes and associated family of slip directions for which dislocation motion can easily occur and lead to plastic deformation. The magnitude and direction of slip are represented by the Burgers vector, b.
A shear band is a narrow zone of intense shearing strain, usually of plastic nature, developing during severe deformation of ductile materials. As an example, a soil specimen is shown in Fig. 1, after an axialsymmetric compression test. Initially the sample was cylindrical in shape and, since symmetry was tried to be preserved during the test, the cylindrical shape was maintained for a while during the test and the deformation was homogeneous, but at extreme loading two X-shaped shear bands had formed and the subsequent deformation was strongly localized.
In geology, a deformation mechanism is a process occurring at a microscopic scale that is responsible for changes in a material's internal structure, shape and volume. The process involves planar discontinuity and/or displacement of atoms from their original position within a crystal lattice structure. These small changes are preserved in various microstructures of materials such as rocks, metals and plastics, and can be studied in depth using optical or digital microscopy.
Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.
Crack closure is a phenomenon in fatigue loading, where the opposing faces of a crack remain in contact even with an external load acting on the material. As the load is increased, a critical value will be reached at which time the crack becomes open. Crack closure occurs from the presence of material propping open the crack faces and can arise from many sources including plastic deformation or phase transformation during crack propagation, corrosion of crack surfaces, presence of fluids in the crack, or roughness at cracked surfaces.
Dislocation avalanches are rapid discrete events during plastic deformation, in which defects are reorganized collectively. This intermittent flow behavior has been observed in microcrystals, whereas macroscopic plasticity appears as a smooth process. Intermittent plastic flow has been observed in several different systems. In AlMg Alloys, interaction between solute and dislocations can cause sudden jump during dynamic strain aging. In metallic glass, it can be observed via shear banding with stress localization; and single crystal plasticity, it shows up as slip burst. However, analysis of the events with orders-magnitude difference in sizes with different crystallographic structure reveals power-law scaling between the number of events and their magnitude, or scale-free flow.
Striations are marks produced on the fracture surface that show the incremental growth of a fatigue crack. A striation marks the position of the crack tip at the time it was made. The term striation generally refers to ductile striations which are rounded bands on the fracture surface separated by depressions or fissures and can have the same appearance on both sides of the mating surfaces of the fatigue crack. Although some research has suggested that many loading cycles are required to form a single striation, it is now generally thought that each striation is the result of a single loading cycle.
Angus J Wilkinson is a professor of materials science based at University of Oxford. He is a specialist in micromechanics, electron microscopy and crystal plasticity. He assists in overseeing the MicroMechanics group while focusing on the fundamentals of material deformation. He developed the HR-EBSD method for mapping stress and dislocation density at high spatial resolution used at the micron scale in mechanical testing and micro-cantilevers to extract data on mechanical properties that are relevant to materials engineering.
Duplex stainless steels are a family of alloys with a two-phase microstructure consisting of both austenitic and ferritic phases. They offer excellent mechanical properties, corrosion resistance, and toughness compared to other types of stainless steel. However, duplex stainless steel can be susceptible to a phenomenon known as 475 °C (887 °F) embrittlement or duplex stainless steel age hardening, which is a type of aging process that causes loss of plasticity in duplex stainless steel when it is heated in the range of 250 to 550 °C. At this temperature range, spontaneous phase separation of the ferrite phase into iron-rich and chromium-rich nanophases occurs, with no change in the mechanical properties of the austenite phase. This type of embrittlement is due to precipitation hardening, which makes the material become brittle and prone to cracking.
{{citation}}
: CS1 maint: location (link)