Part of a series on |
Continuum mechanics |
---|
The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.
Experimental methods were developed using the integral that allowed the measurement of critical fracture properties in sample sizes that are too small for Linear Elastic Fracture Mechanics (LEFM) to be valid. [4] These experiments allow the determination of fracture toughness from the critical value of fracture energy JIc, which defines the point at which large-scale plastic yielding during propagation takes place under mode I loading. [1] [5]
The J-integral is equal to the strain energy release rate for a crack in a body subjected to monotonic loading. [6] This is generally true, under quasistatic conditions, only for linear elastic materials. For materials that experience small-scale yielding at the crack tip, J can be used to compute the energy release rate under special circumstances such as monotonic loading in mode III (antiplane shear). The strain energy release rate can also be computed from J for pure power-law hardening plastic materials that undergo small-scale yielding at the crack tip.
The quantity J is not path-independent for monotonic mode I and mode II loading of elastic-plastic materials, so only a contour very close to the crack tip gives the energy release rate. Also, Rice showed that J is path-independent in plastic materials when there is no non-proportional loading. Unloading is a special case of this, but non-proportional plastic loading also invalidates the path-independence. Such non-proportional loading is the reason for the path-dependence for the in-plane loading modes on elastic-plastic materials.
The two-dimensional J-integral was originally defined as [3] (see Figure 1 for an illustration)
where W(x1,x2) is the strain energy density, x1,x2 are the coordinate directions, t = [σ]n is the surface traction vector, n is the normal to the curve Γ, [σ] is the Cauchy stress tensor, and u is the displacement vector. The strain energy density is given by
The J-integral around a crack tip is frequently expressed in a more general form[ citation needed ] (and in index notation) as
where is the component of the J-integral for crack opening in the direction and is a small region around the crack tip. Using Green's theorem we can show that this integral is zero when the boundary is closed and encloses a region that contains no singularities and is simply connected. If the faces of the crack do not have any surface tractions on them then the J-integral is also path independent.
Rice also showed that the value of the J-integral represents the energy release rate for planar crack growth. The J-integral was developed because of the difficulties involved in computing the stress close to a crack in a nonlinear elastic or elastic-plastic material. Rice showed that if monotonic loading was assumed (without any plastic unloading) then the J-integral could be used to compute the energy release rate of plastic materials too.
Proof that the J-integral is zero over a closed path |
---|
To show the path independence of the J-integral, we first have to show that the value of is zero over a closed contour in a simply connected domain. Let us just consider the expression for which is We can write this as From Green's theorem (or the two-dimensional divergence theorem) we have Using this result we can express as where is the area enclosed by the contour . Now, if there are no body forces present, equilibrium (conservation of linear momentum) requires that Also, Therefore, From the balance of angular momentum we have . Hence, The J-integral may then be written as Now, for an elastic material the stress can be derived from the stored energy function using Then, if the elastic modulus tensor is homogeneous, using the chain rule of differentiation, Therefore, we have for a closed contour enclosing a simply connected region without any elastic inhomogeneity, such as voids and cracks. |
Proof that the J-integral is path-independent |
---|
Consider the contour . Since this contour is closed and encloses a simply connected region, the J-integral around the contour is zero, i.e. assuming that counterclockwise integrals around the crack tip have positive sign. Now, since the crack surfaces are parallel to the axis, the normal component on these surfaces. Also, since the crack surfaces are traction free, . Therefore, Therefore, and the J-integral is path independent. |
For isotropic, perfectly brittle, linear elastic materials, the J-integral can be directly related to the fracture toughness if the crack extends straight ahead with respect to its original orientation. [6]
For plane strain, under Mode I loading conditions, this relation is
where is the critical strain energy release rate, is the fracture toughness in Mode I loading, is the Poisson's ratio, and E is the Young's modulus of the material.
For Mode II loading, the relation between the J-integral and the mode II fracture toughness () is
For Mode III loading, the relation is
Hutchinson, Rice and Rosengren [7] [8] subsequently showed that J characterizes the singular stress and strain fields at the tip of a crack in nonlinear (power law hardening) elastic-plastic materials where the size of the plastic zone is small compared with the crack length. Hutchinson used a material constitutive law of the form suggested by W. Ramberg and W. Osgood: [9]
where σ is the stress in uniaxial tension, σy is a yield stress, ε is the strain, and εy = σy/E is the corresponding yield strain. The quantity E is the elastic Young's modulus of the material. The model is parametrized by α, a dimensionless constant characteristic of the material, and n, the coefficient of work hardening. This model is applicable only to situations where the stress increases monotonically, the stress components remain approximately in the same ratios as loading progresses (proportional loading), and there is no unloading.
If a far-field tensile stress σfar is applied to the body shown in the adjacent figure, the J-integral around the path Γ1 (chosen to be completely inside the elastic zone) is given by
Since the total integral around the crack vanishes and the contributions along the surface of the crack are zero, we have
If the path Γ2 is chosen such that it is inside the fully plastic domain, Hutchinson showed that
where K is a stress amplitude, (r,θ) is a polar coordinate system with origin at the crack tip, s is a constant determined from an asymptotic expansion of the stress field around the crack, and I is a dimensionless integral. The relation between the J-integrals around Γ1 and Γ2 leads to the constraint
and an expression for K in terms of the far-field stress
where β = 1 for plane stress and β = 1 − ν2 for plane strain (ν is the Poisson's ratio).
The asymptotic expansion of the stress field and the above ideas can be used to determine the stress and strain fields in terms of the J-integral:
where and are dimensionless functions.
These expressions indicate that J can be interpreted as a plastic analog to the stress intensity factor (K) that is used in linear elastic fracture mechanics, i.e., we can use a criterion such as J > JIc as a crack growth criterion.
In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.
In engineering, deformation may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.
Dynamic mechanical analysis is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.
Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
Crazing is a yielding mechanism in polymers characterized by the formation of a fine network of microvoids and fibrils. These structures typically appear as linear features and frequently precede brittle fracture. The fundamental difference between crazes and cracks is that crazes contain polymer fibrils, constituting about 50% of their volume, whereas cracks do not. Unlike cracks, crazes can transmit load between their two faces through these fibrils.
In fracture mechanics, the stress intensity factor is used to predict the stress state near the tip of a crack or notch caused by a remote load or residual stresses. It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle materials, and is a critical technique in the discipline of damage tolerance. The concept can also be applied to materials that exhibit small-scale yielding at a crack tip.
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation, showing a smooth elastic-plastic transition. As it is a phenomenological model, checking the fit of the model with actual experimental data for the particular material of interest is essential.
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.
In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.
A fiber-reinforced composite (FRC) is a composite building material that consists of three components:
The cohesive zone model (CZM) is a model in fracture mechanics where fracture formation is regarded as a gradual phenomenon and separation of the crack surfaces takes place across an extended crack tip, or cohesive zone, and is resisted by cohesive tractions. The origin of this model can be traced back to the early sixties by Dugdale (1960) and Barenblatt (1962) to represent nonlinear processes located at the front of a pre-existent crack.
Crack tip opening displacement (CTOD) or is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces. The parameter is used in fracture mechanics to characterize the loading on a crack and can be related to other crack tip loading parameters such as the stress intensity factor and the elastic-plastic J-integral.
Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.
Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
The microplane model, conceived in 1984, is a material constitutive model for progressive softening damage. Its advantage over the classical tensorial constitutive models is that it can capture the oriented nature of damage such as tensile cracking, slip, friction, and compression splitting, as well as the orientation of fiber reinforcement. Another advantage is that the anisotropy of materials such as gas shale or fiber composites can be effectively represented. To prevent unstable strain localization, this model must be used in combination with some nonlocal continuum formulation. Prior to 2000, these advantages were outweighed by greater computational demands of the material subroutine, but thanks to huge increase of computer power, the microplane model is now routinely used in computer programs, even with tens of millions of finite elements.
A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing. Safety factors are used to reduce the predicted fatigue life to a service fatigue life because of the sensitivity of the fatigue life to the size and shape of crack initiating defects and the variability between assumed loading and actual loading experienced by a component.