In continuum mechanics, a hypoelastic material [1] is an elastic material that has a constitutive model independent of finite strain measures except in the linearized case. Hypoelastic material models are distinct from hyperelastic material models (or standard elasticity models) in that, except under special circumstances, they cannot be derived from a strain energy density function.
Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.
In physics, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate forces are applied to them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
A hypoelastic material can be rigorously defined as one that is modeled using a constitutive equation satisfying the following two criteria: [2]
In physics and engineering, a constitutive equation or constitutive relation is a relation between two physical quantities that is specific to a material or substance, and approximates the response of that material to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or forces to strains or deformations.
1. The Cauchy stress at time depends only on the order in which the body has occupied its past configurations, but not on the time rate at which these past configurations were traversed. As a special case, this criterion includes a Cauchy elastic material, for which the current stress depends only on the current configuration rather than the history of past configurations.
In physics, a Cauchy-elastic material is one in which the stress at each point is determined only by the current state of deformation with respect to an arbitrary reference configuration. A Cauchy-elastic material is also called a simple elastic material.
2. There is a tensor-valued function such that in which is the material rate of the Cauchy stress tensor, and is the spatial velocity gradient tensor.
If only these two original criteria are used to define hypoelasticity, then hyperelasticity would be included as a special case, which prompts some constitutive modelers to append a third criterion that specifically requires a hypoelastic model to not be hyperelastic (i.e., hypoelasticity implies that stress is not derivable from an energy potential). If this third criterion is adopted, it follows that a hypoelastic material might admit nonconservative adiabatic loading paths that start and end with the same deformation gradient but do not start and end at the same internal energy.
Note that the second criterion requires only that the function exists. As explained below, specific formulations of hypoelastic models typically employ a so-called objective stress rate so that the function exists only implicitly.
In continuum mechanics, objective stress rates are time derivatives of stress that do not depend on the frame of reference. Many constitutive equations are designed in the form of a relation between a stress-rate and a strain-rate. The mechanical response of a material should not depend on the frame of reference. In other words, material constitutive equations should be frame-indifferent (objective). If the stress and strain measures are material quantities then objectivity is automatically satisfied. However, if the quantities are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.
Hypoelastic material models frequently take the form
where is an objective rate of the Kirchhoff stress (), is the deformation rate tensor, and is the so-called elastic tangent stiffness tensor, which varies with stress itself and is regarded as a material property tensor. In hyperelasticity, the tangent stiffness generally must also depend on the deformation gradient in order to properly account for distortion and rotation of anisotropic material fiber directions. [3]
In many practical problems of solid mechanics, it is sufficient to characterize material deformation by the small (or linearized) strain tensor
where are the components of the displacements of continuum points, the subscripts refer to Cartesian coordinates , and the subscripts preceded by a comma denote partial derivatives (e.g., ). But there are also many problems where the finiteness of strain must be taken into account. These are of two kinds:
In the former kind, the total strain formulation described in the article on finite strain theory is appropriate. In the latter kind an incremental (or rate) formulation is necessary and must be used in every load or time step of a finite element computer program using updated Lagrangian procedure. The absence of a potential raises intricate questions due to the freedom in the choice of finite strain measure and characterization of the stress rate.
For a sufficiently small loading step (or increment), one may use the deformation rate tensor (or velocity strain)
or increment
representing the linearized strain increment from the initial (stressed and deformed) state in the step. Here the superior dot represents the material time derivative ( following a given material particle), denotes a small increment over the step, = time, and = material point velocity or displacement rate.
However, it would not be objective to use the time derivative of the Cauchy (or true) stress . This stress, which describes the forces on a small material element imagined to be cut out from the material as currently deformed, is not objective because it varies with rigid body rotations of the material. The material points must be characterized by their initial coordinates (called Lagrangian) because different material particles are contained in the element that is cut out (at the same location) before and after the incremental deformation.
Consequently, it is necessary to introduce the so-called objective stress rate , or the corresponding increment . The objectivity is necessary for to be functionally related to the element deformation. It means that that must be invariant with respect to coordinate transformations (particularly rotations) and must characterize the state of the same material element as it deforms.
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.
In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure, each particle gets pushed against by all the surrounding particles. The container walls and the pressure-inducing surface push against them in (Newtonian) reaction. These macroscopic forces are actually the net result of a very large number of intermolecular forces and collisions between the particles in those molecules. Stress is frequently represented by a lowercase Greek letter sigma (σ).
Hooke's law is a law of physics that states that the force needed to extend or compress a spring by some distance x scales linearly with respect to that distance. That is: , where k is a constant factor characteristic of the spring: its stiffness, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law already in 1660.
Linear elasticity is the mathematical study of how solid objects deform and become internally stressed due to prescribed loading conditions. Linear elasticity models materials as continua. Linear elasticity is a simplification of the more general nonlinear theory of elasticity and is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding. These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often with the aid of finite element analysis.
A neo-Hookean solid is a hyperelastic material model, similar to Hooke's law, that can be used for predicting the nonlinear stress-strain behavior of materials undergoing large deformations. The model was proposed by Ronald Rivlin in 1948. In contrast to linear elastic materials, the stress-strain curve of a neo-Hookean material is not linear. Instead, the relationship between applied stress and strain is initially linear, but at a certain point the stress-strain curve will plateau. The neo-Hookean model does not account for the dissipative release of energy as heat while straining the material and perfect elasticity is assumed at all stages of deformation.
In continuum mechanics, the Cauchy stress tensor , true stress tensor, or simply called the stress tensor is a second order tensor named after Augustin-Louis Cauchy. The tensor consists of nine components that completely define the state of stress at a point inside a material in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector n to the stress vector T(n) across an imaginary surface perpendicular to n:
A hyperelastic or green elastic material is a type of constitutive model for ideally elastic material for which the stress–strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material.
A strain energy density function or stored energy density function is a scalar valued function that relates the strain energy density of a material to the deformation gradient.
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.
The most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several other measures of stress can be defined. Some such stress measures that are widely used in continuum mechanics, particularly in the computational context, are:
The Gent hyperelastic material model is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value .
The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.
The acoustoelastic effect is how the sound velocities of an elastic material change if subjected to an initial static stress field. This is a non-linear effect of the constitutive relation between mechanical stress and finite strain in a material of continuous mass. In classical linear elasticity theory small deformations of most elastic materials can be described by a linear relation between the applied stress and the resulting strain. This relationship is commonly known as the generalised Hooke's law. The linear elastic theory involves second order elastic constants and yields constant longitudinal and shear sound velocities in an elastic material, not affected by an applied stress. The acoustoelastic effect on the other hand include higher order expansion of the constitutive relation between the applied stress and resulting strain, which yields longitudinal and shear sound velocities dependent of the stress state of the material. In the limit of an unstressed material the sound velocities of the linear elastic theory are reproduced.
Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last work.
Drucker stability refers to a set of mathematical criteria that restrict the possible nonlinear stress-strain relations that can be satisfied by a solid material. The postulates are named after Daniel C. Drucker. A material that does not satisfy these criteria is often found to be unstable in the sense that application of a load to a material point can lead to arbitrary deformations at that material point unless an additional length or time scale is specified in the constitutive relations.
Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.