Transverse isotropy

Last updated
Transverse Isotropy is observed in sedimentary rocks at long wavelengths. Each layer has approximately the same properties in-plane but different properties through-the-thickness. The plane of each layer is the plane of isotropy and the vertical axis is the axis of symmetry. USA 10052 Grand Canyon Luca Galuzzi 2007.jpg
Transverse Isotropy is observed in sedimentary rocks at long wavelengths. Each layer has approximately the same properties in-plane but different properties through-the-thickness. The plane of each layer is the plane of isotropy and the vertical axis is the axis of symmetry.

A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials. In geophysics, vertically transverse isotropy (VTI) is also known as radial anisotropy.

Contents

This type of material exhibits hexagonal symmetry (though technically this ceases to be true for tensors of rank 6 and higher), so the number of independent constants in the (fourth-rank) elasticity tensor are reduced to 5 (from a total of 21 independent constants in the case of a fully anisotropic solid). The (second-rank) tensors of electrical resistivity, permeability, etc. have two independent constants.

Example of transversely isotropic materials

A transversely isotropic elastic material. Transverse Isotropy.svg
A transversely isotropic elastic material.

An example of a transversely isotropic material is the so-called on-axis unidirectional fiber composite lamina where the fibers are circular in cross section. In a unidirectional composite, the plane normal to the fiber direction can be considered as the isotropic plane, at long wavelengths (low frequencies) of excitation. In the figure to the right, the fibers would be aligned with the axis, which is normal to the plane of isotropy.

In terms of effective properties, geological layers of rocks are often interpreted as being transversely isotropic. Calculating the effective elastic properties of such layers in petrology has been coined Backus upscaling, which is described below.

Material symmetry matrix

The material matrix has a symmetry with respect to a given orthogonal transformation () if it does not change when subjected to that transformation. For invariance of the material properties under such a transformation we require

Hence the condition for material symmetry is (using the definition of an orthogonal transformation)

Orthogonal transformations can be represented in Cartesian coordinates by a matrix given by

Therefore, the symmetry condition can be written in matrix form as

For a transversely isotropic material, the matrix has the form

where the -axis is the axis of symmetry. The material matrix remains invariant under rotation by any angle about the -axis.

In physics

Linear material constitutive relations in physics can be expressed in the form

where are two vectors representing physical quantities and is a second-order material tensor. In matrix form,

Examples of physical problems that fit the above template are listed in the table below. [1]

Problem
Electrical conduction Electric current
Electric field
Electrical conductivity
Dielectrics Electrical displacement
Electric field
Electric permittivity
Magnetism Magnetic induction
Magnetic field
Magnetic permeability
Thermal conduction Heat flux
Temperature gradient
Thermal conductivity
Diffusion Particle flux
Concentration gradient
Diffusivity
Flow in porous media Weighted fluid velocity
Pressure gradient
Fluid permeability
Elasticity Stress
Strain
Stiffness

Using in the matrix implies that . Using leads to and . Energy restrictions usually require and hence we must have . Therefore, the material properties of a transversely isotropic material are described by the matrix

In linear elasticity

Condition for material symmetry

In linear elasticity, the stress and strain are related by Hooke's law, i.e.,

or, using Voigt notation,

The condition for material symmetry in linear elastic materials is. [2]

where

Elasticity tensor

Using the specific values of in matrix , [3] it can be shown that the fourth-rank elasticity stiffness tensor may be written in 2-index Voigt notation as the matrix

The elasticity stiffness matrix has 5 independent constants, which are related to well known engineering elastic moduli in the following way. These engineering moduli are experimentally determined.

The compliance matrix (inverse of the elastic stiffness matrix) is

where . In engineering notation,

Comparing these two forms of the compliance matrix shows us that the longitudinal Young's modulus is given by

Similarly, the transverse Young's modulus is

The inplane shear modulus is

and the Poisson's ratio for loading along the polar axis is

.

Here, L represents the longitudinal (polar) direction and T represents the transverse direction.

In geophysics

In geophysics, a common assumption is that the rock formations of the crust are locally polar anisotropic (transversely isotropic); this is the simplest case of geophysical interest. Backus upscaling [4] is often used to determine the effective transversely isotropic elastic constants of layered media for long wavelength seismic waves.

Assumptions that are made in the Backus approximation are:

For shorter wavelengths, the behavior of seismic waves is described using the superposition of plane waves. Transversely isotropic media support three types of elastic plane waves:

Solutions to wave propagation problems in such media may be constructed from these plane waves, using Fourier synthesis.

Backus upscaling (long wavelength approximation)

A layered model of homogeneous and isotropic material, can be up-scaled to a transverse isotropic medium, proposed by Backus. [4]

Backus presented an equivalent medium theory, a heterogeneous medium can be replaced by a homogeneous one that predicts wave propagation in the actual medium. [5] Backus showed that layering on a scale much finer than the wavelength has an impact and that a number of isotropic layers can be replaced by a homogeneous transversely isotropic medium that behaves exactly in the same manner as the actual medium under static load in the infinite wavelength limit.

If each layer is described by 5 transversely isotropic parameters , specifying the matrix

The elastic moduli for the effective medium will be

where

denotes the volume weighted average over all layers.

This includes isotropic layers, as the layer is isotropic if , and .

Short and medium wavelength approximation

Solutions to wave propagation problems in linear elastic transversely isotropic media can be constructed by superposing solutions for the quasi-P wave, the quasi S-wave, and a S-wave polarized orthogonal to the quasi S-wave. However, the equations for the angular variation of velocity are algebraically complex and the plane-wave velocities are functions of the propagation angle are. [6] The direction dependent wave speeds for elastic waves through the material can be found by using the Christoffel equation and are given by [7]

where is the angle between the axis of symmetry and the wave propagation direction, is mass density and the are elements of the elastic stiffness matrix. The Thomsen parameters are used to simplify these expressions and make them easier to understand.

Thomsen parameters

Thomsen parameters [8] are dimensionless combinations of elastic moduli that characterize transversely isotropic materials, which are encountered, for example, in geophysics. In terms of the components of the elastic stiffness matrix, these parameters are defined as:

where index 3 indicates the axis of symmetry () . These parameters, in conjunction with the associated P wave and S wave velocities, can be used to characterize wave propagation through weakly anisotropic, layered media. Empirically, the Thomsen parameters for most layered rock formations are much lower than 1.

The name refers to Leon Thomsen, professor of geophysics at the University of Houston, who proposed these parameters in his 1986 paper "Weak Elastic Anisotropy".

Simplified expressions for wave velocities

In geophysics the anisotropy in elastic properties is usually weak, in which case . When the exact expressions for the wave velocities above are linearized in these small quantities, they simplify to

where

are the P and S wave velocities in the direction of the axis of symmetry () (in geophysics, this is usually, but not always, the vertical direction). Note that may be further linearized, but this does not lead to further simplification.

The approximate expressions for the wave velocities are simple enough to be physically interpreted, and sufficiently accurate for most geophysical applications. These expressions are also useful in some contexts where the anisotropy is not weak.

See also

Related Research Articles

In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. Note that Jones calculus is only applicable to light that is already fully polarized. Light which is randomly polarized, partially polarized, or incoherent must be treated using Mueller calculus.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin; its polar angle measured from a fixed polar axis or zenith direction; and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the fixed axis, measured from another fixed reference direction on that plane. When radius is fixed, the two angular coordinates make a coordinate system on the sphere sometimes called spherical polar coordinates.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.

<span class="mw-page-title-main">Unit vector</span> Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Vector fields in cylindrical and spherical coordinates</span> Vector field representation in 3D curvilinear coordinate systems

Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.

<span class="mw-page-title-main">Viviani's curve</span> Figure-eight shaped curve on a sphere

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

<span class="mw-page-title-main">Orthotropic material</span>

In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational symmetry. These directional differences in strength can be quantified with Hankinson's equation.

Seismic anisotropy is the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Yield surface</span>

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

<span class="mw-page-title-main">Axis–angle representation</span> Parameterization of a rotation into a unit vector and angle

In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.

This article derives the main properties of rotations in 3-dimensional space.

<span class="mw-page-title-main">Deformation (physics)</span> Transformation of a body from a reference configuration to a current configuration

In physics and continuum mechanics, deformation is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.

<span class="mw-page-title-main">Composite laminate</span>

In materials science, a composite laminate is an assembly of layers of fibrous composite materials which can be joined to provide required engineering properties, including in-plane stiffness, bending stiffness, strength, and coefficient of thermal expansion.

References

  1. Milton, G. W. (2002). The Theory of Composites. Cambridge University Press.
  2. Slawinski, M. A. (2010). Waves and Rays in Elastic Continua (PDF). World Scientific. Archived from the original (PDF) on 2009-02-10.
  3. We can use the values and for a derivation of the stiffness matrix for transversely isotropic materials. Specific values are chosen to make the calculation easier.
  4. 1 2 Backus, G. E. (1962), Long-Wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., 67(11), 4427–4440
  5. Ikelle, Luc T. and Amundsen, Lasse (2005),Introduction to petroleum seismology, SEG Investigations in Geophysics No. 12
  6. Nye, J. F. (2000). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.
  7. G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN   0-521-54344-4
  8. Thomsen, Leon (1986). "Weak Elastic Anisotropy". Geophysics. 51 (10): 1954–1966. Bibcode:1986Geop...51.1954T. doi:10.1190/1.1442051.