A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials. In geophysics, vertically transverse isotropy (VTI) is also known as radial anisotropy.
This type of material exhibits hexagonal symmetry (though technically this ceases to be true for tensors of rank 6 and higher), so the number of independent constants in the (fourth-rank) elasticity tensor are reduced to 5 (from a total of 21 independent constants in the case of a fully anisotropic solid). The (second-rank) tensors of electrical resistivity, permeability, etc. have two independent constants.
An example of a transversely isotropic material is the so-called on-axis unidirectional fiber composite lamina where the fibers are circular in cross section. In a unidirectional composite, the plane normal to the fiber direction can be considered as the isotropic plane, at long wavelengths (low frequencies) of excitation. In the figure to the right, the fibers would be aligned with the axis, which is normal to the plane of isotropy.
In terms of effective properties, geological layers of rocks are often interpreted as being transversely isotropic. Calculating the effective elastic properties of such layers in petrology has been coined Backus upscaling, which is described below.
The material matrix has a symmetry with respect to a given orthogonal transformation () if it does not change when subjected to that transformation. For invariance of the material properties under such a transformation we require
Hence the condition for material symmetry is (using the definition of an orthogonal transformation)
Orthogonal transformations can be represented in Cartesian coordinates by a matrix given by
Therefore, the symmetry condition can be written in matrix form as
For a transversely isotropic material, the matrix has the form
where the -axis is the axis of symmetry. The material matrix remains invariant under rotation by any angle about the -axis.
Linear material constitutive relations in physics can be expressed in the form
where are two vectors representing physical quantities and is a second-order material tensor. In matrix form,
Examples of physical problems that fit the above template are listed in the table below. [1]
Using in the matrix implies that . Using leads to and . Energy restrictions usually require and hence we must have . Therefore, the material properties of a transversely isotropic material are described by the matrix
In linear elasticity, the stress and strain are related by Hooke's law, i.e.,
or, using Voigt notation,
The condition for material symmetry in linear elastic materials is. [2]
where
Using the specific values of in matrix , [3] it can be shown that the fourth-rank elasticity stiffness tensor may be written in 2-index Voigt notation as the matrix
The elasticity stiffness matrix has 5 independent constants, which are related to well known engineering elastic moduli in the following way. These engineering moduli are experimentally determined.
The compliance matrix (inverse of the elastic stiffness matrix) is
where . In engineering notation,
Comparing these two forms of the compliance matrix shows us that the longitudinal Young's modulus is given by
Similarly, the transverse Young's modulus is
The inplane shear modulus is
and the Poisson's ratio for loading along the polar axis is
Here, L represents the longitudinal (polar) direction and T represents the transverse direction.
In geophysics, a common assumption is that the rock formations of the crust are locally polar anisotropic (transversely isotropic); this is the simplest case of geophysical interest. Backus upscaling [4] is often used to determine the effective transversely isotropic elastic constants of layered media for long wavelength seismic waves.
Assumptions that are made in the Backus approximation are:
For shorter wavelengths, the behavior of seismic waves is described using the superposition of plane waves. Transversely isotropic media support three types of elastic plane waves:
Solutions to wave propagation problems in such media may be constructed from these plane waves, using Fourier synthesis.
A layered model of homogeneous and isotropic material, can be up-scaled to a transverse isotropic medium, proposed by Backus. [4]
Backus presented an equivalent medium theory, a heterogeneous medium can be replaced by a homogeneous one that predicts wave propagation in the actual medium. [5] Backus showed that layering on a scale much finer than the wavelength has an impact and that a number of isotropic layers can be replaced by a homogeneous transversely isotropic medium that behaves exactly in the same manner as the actual medium under static load in the infinite wavelength limit.
If each layer is described by 5 transversely isotropic parameters , specifying the matrix
The elastic moduli for the effective medium will be
where
denotes the volume weighted average over all layers.
This includes isotropic layers, as the layer is isotropic if , and .
Solutions to wave propagation problems in linear elastic transversely isotropic media can be constructed by superposing solutions for the quasi-P wave, the quasi S-wave, and a S-wave polarized orthogonal to the quasi S-wave. However, the equations for the angular variation of velocity are algebraically complex and the plane-wave velocities are functions of the propagation angle are. [6] The direction dependent wave speeds for elastic waves through the material can be found by using the Christoffel equation and are given by [7]
where is the angle between the axis of symmetry and the wave propagation direction, is mass density and the are elements of the elastic stiffness matrix. The Thomsen parameters are used to simplify these expressions and make them easier to understand.
Thomsen parameters [8] are dimensionless combinations of elastic moduli that characterize transversely isotropic materials, which are encountered, for example, in geophysics. In terms of the components of the elastic stiffness matrix, these parameters are defined as:
where index 3 indicates the axis of symmetry () . These parameters, in conjunction with the associated P wave and S wave velocities, can be used to characterize wave propagation through weakly anisotropic, layered media. Empirically, the Thomsen parameters for most layered rock formations are much lower than 1.
The name refers to Leon Thomsen, professor of geophysics at the University of Houston, who proposed these parameters in his 1986 paper "Weak Elastic Anisotropy".
In geophysics the anisotropy in elastic properties is usually weak, in which case . When the exact expressions for the wave velocities above are linearized in these small quantities, they simplify to
where
are the P and S wave velocities in the direction of the axis of symmetry () (in geophysics, this is usually, but not always, the vertical direction). Note that may be further linearized, but this does not lead to further simplification.
The approximate expressions for the wave velocities are simple enough to be physically interpreted, and sufficiently accurate for most geophysical applications. These expressions are also useful in some contexts where the anisotropy is not weak.
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.
In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.
In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.
Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix
The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.
In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.
In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational symmetry. These directional differences in strength can be quantified with Hankinson's equation.
Seismic anisotropy is the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth.
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.
In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation. A configuration is a set containing the positions of all particles of the body.
In materials science, a composite laminate is an assembly of layers of fibrous composite materials which can be joined to provide required engineering properties, including in-plane stiffness, bending stiffness, strength, and coefficient of thermal expansion.
In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.