Taylor cone

Last updated
Photograph of a meniscus of polyvinyl alcohol in aqueous solution showing a fibre drawn from a Taylor cone by the process of electrospinning. Taylor cone photo.jpg
Photograph of a meniscus of polyvinyl alcohol in aqueous solution showing a fibre drawn from a Taylor cone by the process of electrospinning.

A Taylor cone refers to the cone observed in electrospinning, electrospraying and hydrodynamic spray processes from which a jet of charged particles emanates above a threshold voltage. Aside from electrospray ionization in mass spectrometry, the Taylor cone is important in field-emission electric propulsion (FEEP) and colloid thrusters used in fine control and high efficiency (low power) thrust of spacecraft.

Contents

History

This cone was described by Sir Geoffrey Ingram Taylor in 1964 before electrospray was "discovered". [1] This work followed on the work of Zeleny [2] who photographed a cone-jet of glycerine in a strong electric field and the work of several others: Wilson and Taylor (1925), [3] Nolan (1926) [4] and Macky (1931). [5] Taylor was primarily interested in the behavior of water droplets in strong electric fields, such as in thunderstorms.

Formation

Electrospray diagram depicting the Taylor cone, jet and plume Taylor cone.jpg
Electrospray diagram depicting the Taylor cone, jet and plume

When a small volume of electrically conductive liquid is exposed to an electric field, the shape of liquid starts to deform from the shape caused by surface tension alone. The liquid becomes polarized [6] and as the voltage is increased the effect of the electric field becomes more prominent. This causes an intense electric field surrounding the liquid droplet [6] As this effect of the electric field begins to exert a similar magnitude of force on the droplet as the surface tension does, a cone shape begins to form with convex sides and a rounded tip. This approaches the shape of a cone with a whole angle (width) of 98.6°. [1] When a certain threshold voltage has been reached the slightly rounded tip inverts and emits a jet of liquid. This is called a cone-jet and is the beginning of the electrospraying process in which ions may be transferred to the gas phase. It is generally found that in order to achieve a stable cone-jet a slightly higher than threshold voltage must be used. As the voltage is increased even more, other modes of droplet disintegration are found. The term Taylor cone can specifically refer to the theoretical limit of a perfect cone of exactly the predicted angle or generally refer to the approximately conical portion of a cone-jet after the electrospraying process has begun.

Taylor cones can be stationary as cone-jets described previously, or transient which can form when droplets undergo Coulombic explosion. [7]

Theory

Sir Geoffrey Ingram Taylor in 1964 described this phenomenon, theoretically derived based on general assumptions that the requirements to form a perfect cone under such conditions required a semi-vertical angle of 49.3° (a whole angle of 98.6°) and demonstrated that the shape of such a cone approached the theoretical shape just before jet formation. This angle is known as the Taylor angle. This angle is more precisely where is the first zero of (the Legendre function of order 1/2).

Taylor's derivation is based on two assumptions: (1) that the surface of the cone is an equipotential surface and (2) that the cone exists in a steady state equilibrium. To meet both of these criteria the electric field must have azimuthal symmetry and have dependence to counter the surface tension to produce the cone. The solution to this problem is:

where (equipotential surface) exists at a value of (regardless of R) producing an equipotential cone. The angle necessary for for all R is a zero of between 0 and which there is only one at 130.7099°. The complement of this angle is the Taylor angle.

Related Research Articles

<span class="mw-page-title-main">Hydrophobe</span> Molecule or surface that has no attraction to water

In chemistry, hydrophobicity is the chemical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Surface tension</span> Tendency of a liquid surface to shrink to reduce surface area

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects to float on a water surface without becoming even partly submerged.

<span class="mw-page-title-main">Electrospray ionization</span> Technique used in mass spectroscopy

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments.

Electrowetting is the modification of the wetting properties of a surface with an applied electric field.

In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Phasor</span> Complex number representing a particular sine wave

In physics and engineering, a phasor is a complex number representing a sinusoidal function whose amplitude, and initial phase are time-invariant and whose angular frequency is fixed. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and sinor or even complexor.

<span class="mw-page-title-main">Wetting</span> Ability of a liquid to maintain contact with a solid surface

Wetting is the ability of a liquid to displace gas to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with the first one. The degree of wetting (wettability) is determined by a force balance between adhesive and cohesive forces. There are two types of wetting: non-reactive wetting and reactive wetting.

<span class="mw-page-title-main">Contact angle</span> Angle between a liquid–vapor interface and a solid surface

The contact angle is the angle between a liquid surface and a solid surface where they meet. More specifically, it is the angle between the surface tangent on the liquid–vapor interface and the tangent on the solid–liquid interface at their intersection. It quantifies the wettability of a solid surface by a liquid via the Young equation.

The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter. Ideally the liquid reaching the emitter tip forms a Taylor cone, which emits a liquid jet through its apex. Varicose waves on the surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed due to Coulomb repulsion.

<span class="mw-page-title-main">Cassie's law</span>

Cassie's law, or the Cassie equation, describes the effective contact angle θc for a liquid on a chemically heterogeneous surface, i.e. the surface of a composite material consisting of different chemistries, that is, non-uniform throughout. Contact angles are important as they quantify a surface's wettability, the nature of solid-fluid intermolecular interactions. Cassie's law is reserved for when a liquid completely covers both smooth and rough heterogeneous surfaces.

<span class="mw-page-title-main">Ultrahydrophobicity</span> Material property of extreme resistance to wetting

In chemistry and materials science, ultrahydrophobic surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem.

<span class="mw-page-title-main">Hypercone</span> 4-dimensional figure

In geometry, a hypercone is the figure in the 4-dimensional Euclidean space represented by the equation

The Fréedericksz transition is a phase transition in liquid crystals produced when a sufficiently strong electric or magnetic field is applied to a liquid crystal in an undistorted state. Below a certain field threshold the director remains undistorted. As the field value is gradually increased from this threshold, the director begins to twist until it is aligned with the field. In this fashion the Fréedericksz transition can occur in three different configurations known as the twist, bend, and splay geometries. The phase transition was first observed by Fréedericksz and Repiewa in 1927. In this first experiment of theirs, one of the walls of the cell was concave so as to produce a variation in thickness along the cell. The phase transition is named in honor of the Russian physicist Vsevolod Frederiks.

<span class="mw-page-title-main">Electrodynamic droplet deformation</span> Liquid droplets suspended in a liquid exposed to an oscillating electric field

Electrohydrodynamic droplet deformation is a phenomenon that occurs when liquid droplets suspended in a second immiscible liquid are exposed to an oscillating electric field. Under these conditions, the droplet will periodically deform between prolate and oblate spheroids. The characteristic frequency and magnitude of the deformation is determined by a balance of electrodynamic, hydrodynamic, and capillary stresses acting on the droplet interface. This phenomenon has been studied extensively both mathematically and experimentally because of the complex fluid dynamics that occur. Characterization and modulation of electrodynamic droplet deformation is of particular interest for engineering applications because of the growing need to improve the performance of complex industrial processes(e.g. two-phase cooling, crude oil demulsification). The primary advantage of using oscillatory droplet deformation to improve these engineering processes is that the phenomenon does not require sophisticated machinery or the introduction of heat sources. This effectively means that improving performance via oscillatory droplet deformation is simple and in no way diminishes the effectiveness of the existing engineering system.

<span class="mw-page-title-main">Elasto-capillarity</span> Physical phenomenon

Elasto-capillarity is the ability of capillary force to deform an elastic material. From the viewpoint of mechanics, elastocapillarity phenomena essentially involve competition between the elastic strain energy in the bulk and the energy on the surfaces/interfaces. In the modeling of these phenomena, some challenging issues are, among others, the exact characterization of energies at the micro scale, the solution of strongly nonlinear problems of structures with large deformation and moving boundary conditions, and instability of either solid structures or droplets/films.The capillary forces are generally negligible in the analysis of macroscopic structures but often play a significant role in many phenomena at small scales.

Optoelectrowetting (OEW) is a method of liquid droplet manipulation used in microfluidics applications. This technique builds on the principle of electrowetting, which has proven useful in liquid actuation due to fast switching response times and low power consumption. Where traditional electrowetting runs into challenges, however, such as in the simultaneous manipulation of multiple droplets, OEW presents a lucrative alternative that is both simpler and cheaper to produce. OEW surfaces are easy to fabricate, since they require no lithography, and have real-time, reconfigurable, large-scale manipulation control, due to its reaction to light intensity.

<span class="mw-page-title-main">Ideal surface</span>

An ideal solid surface is flat, rigid, perfectly smooth, and chemically homogeneous, and has zero contact angle hysteresis. Zero hysteresis implies the advancing and receding contact angles are equal.

References

  1. 1 2 Sir Geoffrey Taylor (1964). "Disintegration of Water Droplets in an Electric Field". Proceedings of the Royal Society A . 280 (1382): 383–397. Bibcode:1964RSPSA.280..383T. doi:10.1098/rspa.1964.0151. JSTOR   2415876.
  2. Zeleny, J. (1914). "The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces". Physical Review . 3 (2): 69–91. Bibcode:1914PhRv....3...69Z. doi:10.1103/PhysRev.3.69.
  3. Wilson, C. T.; G. I Taylor (1925). "The bursting of soap bubbles in a uniform electric field". Proc. Cambridge Philos. Soc. 22 (5): 728. Bibcode:1925PCPS...22..728W. doi:10.1017/S0305004100009609.
  4. Nolan, J. J. (1926). "The Breaking of Water-Drops by Electric Fields". Proc. R. Ir. Acad. A. 37: 28.
  5. Macky, W. A. (October 1, 1931). "Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields". Proceedings of the Royal Society A . 133 (822): 565–587. Bibcode:1931RSPSA.133..565M. doi: 10.1098/rspa.1931.0168 .
  6. 1 2 Gañán-Calvo, Alfonso M.; López-Herrera, José M.; Herrada, Miguel A.; Ramos, Antonio; Montanero, José M. (November 2018). "Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray" (PDF). Journal of Aerosol Science. 125: 32–56.
  7. Rosell-Llompart, Joan; Grifoll, Jordi; Loscertales, Ignacio G. (November 2018). "Electrosprays in the cone-jet mode: From Taylor cone formation to spray development". Journal of Aerosol Science. 125: 2–31. doi:10.1016/j.jaerosci.2018.04.008 via Elsevier Science Direct.