Lamella (materials)

Last updated

A lamella (pl.: lamellae) is a small plate or flake, from the Latin, and may also be used to refer to collections of fine sheets of material held adjacent to one another, in a gill-shaped structure, often with fluid in between though sometimes simply a set of 'welded' plates. The term is used in biological contexts to describe thin membranes of plates of tissue. In context of materials science, the microscopic structures in bone and nacre are called lamellae. Moreover, the term lamella is often used as a way to describe crystal structure of some materials. [1]

Contents

Uses of the term

In surface chemistry (especially mineralogy and materials science), lamellar structures are fine layers, alternating between different materials. They can be produced by chemical effects (as in eutectic solidification), biological means, or a deliberate process of lamination, such as pattern welding. Lamellae can also describe the layers of atoms in the crystal lattices of materials such as metals.

In surface anatomy, a lamella is a thin plate-like structure, often one amongst many lamellae very close to one another, with open space between.

In chemical engineering, the term is used for devices such as filters and heat exchangers.

In mycology, a lamella (or gill) is a papery hymenophore rib under the cap of some mushroom species, most often agarics.

The term has been used to describe the construction of lamellar armour, as well as the layered structures that can be described by a lamellar vector field.

In medical professions, especially orthopedic surgery, the term is used to refer to 3D printed titanium technology which is used to create implantable medical devices (in this case, orthopedic implants). [2]

In context of water-treatment, lamellar filters may be referred to as plate filters or tube filters.

This term is used to describe a certain type of ichthyosis, a congenital skin condition. Lamellar Ichthyosis often presents with a "colloidal" membrane at birth. It is characterized by generalized dark scaling.

The term lamella(e) is used in the flooring industry to describe the finished top-layer of an engineered wooden floor. For example, an engineered walnut floor will have several layers of wood and a top walnut lamella.

In archaeology, the term is used for a variety of small flat and thin objects, such as Amulet MS 5236, a very thin gold plate with a stamped text from Ancient Greece in the 6th century BC.

In crystallography, the term was first used by Christopher Chantler and refers to a very thin layer of a perfect crystal, from which curved crystal physics may be derived. [3]

In textile industry, a lamella is a thin metallic strip used alone or wound around a core thread for goldwork embroidery and tapestry weaving. [4]

In September 2010, the U.S. Food and Drug Administration (FDA) announced a recall of two medications which contained "extremely thin glass flakes (lamellae) that are barely visible in most cases. The lamellae result from the interaction of the formulation with glass vials over the shelf life of the product." [5]

See also

Related Research Articles

<span class="mw-page-title-main">Mica</span> Group of phyllosilicate minerals

Micas are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is common in igneous and metamorphic rock and is occasionally found as small flakes in sedimentary rock. It is particularly prominent in many granites, pegmatites, and schists, and "books" of mica several feet across have been found in some pegmatites.

<span class="mw-page-title-main">Titanium</span> Chemical element, symbol Ti and atomic number 22

Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

<span class="mw-page-title-main">X-ray crystallography</span> Technique used for determining crystal structures and identifying mineral compounds

X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the positions of the atoms in the crystal can be determined, as well as their chemical bonds, crystallographic disorder, and various other information.

<span class="mw-page-title-main">Octahedrite</span> Structural class of iron meteorites

Octahedrites are the most common structural class of iron meteorites. The structures occur because the meteoric iron has a certain nickel concentration that leads to the exsolution of kamacite out of taenite while cooling.

<span class="mw-page-title-main">Lamellar armour</span> Armour made of overlapping scales, without a solid backing

Lamellar armour is a type of body armour, made from small rectangular plates of iron or steel, leather (rawhide), bone, or bronze laced into horizontal rows. Lamellar armour was used over a wide range of time periods in Central Asia, Eastern Asia, Western Asia, and Eastern Europe. The earliest evidence for lamellar armour comes from sculpted artwork of the Neo-Assyrian Empire in the Near East.

<span class="mw-page-title-main">Galling</span> Form of wear caused by adhesion between sliding surfaces

Galling is a form of wear caused by adhesion between sliding surfaces. When a material galls, some of it is pulled with the contacting surface, especially if there is a large amount of force compressing the surfaces together. Galling is caused by a combination of friction and adhesion between the surfaces, followed by slipping and tearing of crystal structure beneath the surface. This will generally leave some material stuck or even friction welded to the adjacent surface, whereas the galled material may appear gouged with balled-up or torn lumps of material stuck to its surface.

<span class="mw-page-title-main">Lamella (surface anatomy)</span> Anatomical structure

In surface anatomy, a lamella is a thin plate-like structure, often one amongst many lamellae very close to one another, with open space between. Aside from respiratory organs, they appear in other biological roles including filter feeding and the traction surfaces of geckos.

<span class="mw-page-title-main">Titanium carbide</span> Chemical compound

Titanium carbide, TiC, is an extremely hard refractory ceramic material, similar to tungsten carbide. It has the appearance of black powder with the sodium chloride crystal structure.

<span class="mw-page-title-main">Titanium nitride</span> Ceramic material

Titanium nitride is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.

Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness. They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures. However, the high cost of both raw materials and processing limit their use to military applications, aircraft, spacecraft, bicycles, medical devices, jewelry, highly stressed components such as connecting rods on expensive sports cars and some premium sports equipment and consumer electronics.

<span class="mw-page-title-main">Implant (medicine)</span> Device surgically placed within the body for medical purposes

An implant is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure. For example, an implant may be a rod, used to strengthen weak bones. Medical implants are human-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. The surface of implants that contact the body might be made of a biomedical material such as titanium, silicone, or apatite depending on what is the most functional. In 2018, for example, American Elements developed a nickel alloy powder for 3D printing robust, long-lasting, and biocompatible medical implants. In some cases implants contain electronics, e.g. artificial pacemaker and cochlear implants. Some implants are bioactive, such as subcutaneous drug delivery devices in the form of implantable pills or drug-eluting stents.

<span class="mw-page-title-main">Intergranular corrosion</span> When crystallite boundaries are more corrosive than their interiors

In materials science, intergranular corrosion (IGC), also known as intergranular attack (IGA), is a form of corrosion where the boundaries of crystallites of the material are more susceptible to corrosion than their insides.

A lamella in biology refers to a thin layer, membrane or plate of tissue. This is a very broad definition, and can refer to many different structures. Any thin layer of organic tissue can be called a lamella and there is a wide array of functions an individual layer can serve. For example, an intercellular lipid lamella is formed when lamellar disks fuse to form a lamellar sheet. It is believed that these disks are formed from vesicles, giving the lamellar sheet a lipid bilayer that plays a role in water diffusion.

<span class="mw-page-title-main">Functionally graded material</span> In materials science

In materials science Functionally Graded Materials (FGMs) may be characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material. The materials can be designed for specific function and applications. Various approaches based on the bulk, preform processing, layer processing and melt processing are used to fabricate the functionally graded materials.

Diffraction topography is a imaging technique based on Bragg diffraction. Diffraction topographic images ("topographies") record the intensity profile of a beam of X-rays diffracted by a crystal. A topography thus represents a two-dimensional spatial intensity mapping of reflected X-rays, i.e. the spatial fine structure of a Laue reflection. This intensity mapping reflects the distribution of scattering power inside the crystal; topographs therefore reveal the irregularities in a non-ideal crystal lattice. X-ray diffraction topography is one variant of X-ray imaging, making use of diffraction contrast rather than absorption contrast which is usually used in radiography and computed tomography (CT). Topography is exploited to a lesser extends with neutrons, and has similarities to dark field imaging in the electron microscope community.

Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material is placed under a vacuum and fused together from heating by an electron beam. This technique is distinct from selective laser sintering as the raw material fuses having completely melted.

Nitinol biocompatibility is an important factor in biomedical applications. Nitinol (NiTi), which is formed by alloying nickel and titanium, is a shape-memory alloy with superelastic properties more similar to that of bone, when compared to stainless steel, another commonly used biomaterial. Biomedical applications that utilize nitinol include stents, heart valve tools, bone anchors, staples, septal defect devices and implants. It is a commonly used biomaterial especially in the development of stent technology.

Lamella means a small plate or flake in Latin, and in English may refer to:

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

<span class="mw-page-title-main">Bouligand structure</span>

A Bouligand structure is a layered and rotated microstructure resembling plywood, which is frequently found in naturally evolved materials. It consists of multiple lamellae, or layers, each one composed of aligned fibers. Adjacent lamellae are progressively rotated with respect to their neighbors. This structure enhances the mechanical properties of materials, especially its fracture resistance, and enables strength and in plane isotropy. It is found in various natural structures, including the cosmoid scale of the coelacanth, and the dactyl club of the mantis shrimp and many other stomatopods.

References

  1. Dorset, D. L. (1995-12-01). "The crystal structure of waxes". Acta Crystallographica Section B: Structural Science. 51 (6): 1021–1028. Bibcode:1995AcCrB..51.1021D. doi:10.1107/s0108768195005465. ISSN   0108-7681. PMID   8554724.
  2. "New 3D Printed Lamellar Titanium Technology encourages bone growth with spinal implants". 3ders.org. Retrieved 2020-05-06.
  3. Chantler, C. T. (1992). "X-ray diffraction of bent crystals in Bragg geometry. I. Perfect-crystal modelling". Journal of Applied Crystallography. 25 (6): 674–693. Bibcode:1992JApCr..25..674C. doi:10.1107/S0021889892005053.
  4. Schoeser, Mary (2007). Silk . New Haven: Yale University Press. p.  248. ISBN   9780300117417 . Retrieved 30 January 2018.
  5. Amgen Initiates Voluntary Nationwide Recall of Certain Lots Of Epogen And Procrit (Epoetin Alfa)